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ABSTRACT
The paper reviews special Aronszajn trees, both at ω1 and κ+ for an uncountable
regular κ. It provides a comprehensive classification of the trees and discusses the
existence of these trees under different set-theoretical assumptions. The paper pro-
vides details and proofs for many folklore results which circulate (often without a
proper proof) in the literature.
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1. Introduction

A tree, which is now called Aronszajn, was first constructed by Nachman Aronszajn
and the construction can be found in [Kur35]. The constructed tree was actually a special
ω1-Aronszajn tree. The definition of special Aronszajn tree has several equivalent vari-
ants and in the literature can be found many generalizations of the definition of a special
Aronszajn tree. In this paper we focus on the question what are the relationships between
them and provide a basic classification.

1.1 Preliminaries

In this section, we provide a review of basic definitions and facts relating to trees.

Definition 1.1. We say that (T,<) is a tree if (T,<) is a partial order such that for each
t ∈ T , the set {s ∈ T|s < t} is wellordered by <.

Definition 1.2. We say that S ⊆ T is a subtree of (T,<) in the induced ordering < if
∀s ∈ S ∀t ∈ T(t < s → t ∈ S).

Definition 1.3. Let T be a tree
(i) If t ∈ T , then ht(t,T) = ot({s ∈ T|s < t}) is height of t in T ;
(ii) For each ordinal α, we define the α-th level of T as Tα = {t ∈ T|ht(t) = α};
(iii) The height of T , ht(T), is the least α such that Tα = ∅;
(iv) T � α = ⋃β<α Tβ is a subtree of T of height α.

Definition 1.4. For a regular κ ≥ ω, T is called a κ-tree if T has height κ, and |Tα| < κ
for each α < κ.
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Many κ-tree is isomorphic to a subtree of the full tree (<κκ, ⊂). More precisely, this is
the case whenever the κ-tree is normal. See the definition below.

Definition 1.5. A normal κ-tree is a tree T such that:
(i) ht(T) = κ;
(ii) |Tα| < κ, for every α < κ;
(iii) |T0| = 1;
(iv) If ht(s,T) = ht(t,T) is a limit ordinal, then s = t if and only if {r ∈ T|r < s} =

{r ∈ T|r < t}.

Note that the conditions (i) and (ii) ensure that a normal κ-tree is a κ-tree.

Fact 1.6. Let κ be a regular cardinal. Then every normal κ-tree is isomorphic to a subtree
T′ of the full tree (<κκ, ⊂).

If we consider a successor cardinal κ+ in the previous fact, then the levels of the κ+-tree
have size ≤κ. Hence we can strengthen the formulation of the previous fact for successor
cardinals as follows: Every normal κ+-tree is isomorphic to a subtree T′ of the full tree
(<κ+κ, ⊂).

Definition 1.7. Let T be a tree. We say that B is a branch if it is a maximal chain in T .

Definition 1.8. Let κ be a regular cardinal. We say that a κ-tree T is a κ-Aronszajn tree
if it has no branch of size κ. We denote the class of all Aronszajn trees at κ as A(κ).

By König’s Lemma, no ω-Aronszajn trees exist. On the other hand, by result of Aron-
szajn, there exists an ω1-Aronszajn tree. Moreover, if we assume GCH, then there exists
a κ+-Aronszajn tree for each regular cardinal κ, by a result of Specker [Spe49].

There are two common strengthenings of the notion of an Aronszajn tree. The first
one leads to the notion of a special Aronszajn tree, to which we dedicate the next section.
The second leads to the notion of a Suslin tree.

Definition 1.9. Let κ be a regular cardinal. We say that a κ-Aronszajn tree is Suslin, if
it has no antichain1 of size κ. We denote the class of all Suslin trees at κ as S(κ).

The notion of anω1-Suslin tree first appeared in connectionwith the Suslin problemof
the characterization of the real line. Actually, in [Kur35] Kurepa showed that the original
Suslin hypothesis (SH) can be formulated as the claim that there are no Suslin trees. For
more details about Suslin hypothesis see [Jec03].

2. Special Aronszajn trees atω1

2.1 Classification

In this section, we classify different types of special Aronszajn trees at ω1. Most of
the notions are standard, but dispersed through diverse papers, so we think it is useful to
provide a unified treatment here.

1 A ⊂ T is an antichain if for every t, s ∈ A, if t ≠ s, then there is no u ∈ T such that u ≥ t and u ≥ s.
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Definition 2.1. We say that an ω1-Aronszajn tree T is special if T is a union of count-
able many antichains. We denote the class of all special Aronszajn trees at ω1 asAsp(ω1).

Definition 2.2. Let κ be a regular cardinal, T be a κ-Aronszajn tree and P = ⟨P,<P⟩
be a partially ordered set. We say that T is P-embeddable if there is a function f ∶ T → P
such that s <T t → f (s) <P f (t). We denote the class of all P-embeddable trees at κ as
T(P)(κ).

Note that the previous definition can be generalized for arbitrary partially ordered set.

Definition 2.3. Let κ be a regular cardinal,R = ⟨R,<R⟩ and P = ⟨P,<P⟩ be a partially
ordered sets. We say that R is P-embeddable if there is a function f ∶ R → P such that
s <R t → f (s) <P f (t).

Fact 2.4. The following are equivalent for an ω1-Aronszajn tree T :
(i) T is special;
(ii) There is f ∶ T → ω such that if s, t are comparable in T , then f (s) ≠ f (t);
(iii) T isQ-embeddable, i.e. T ∈ T(Q)(ω1).
When we work with Q-embeddable Aronszajn trees it is natural to consider also R-

embeddable Aronszajn trees and ask what is the connection between them. The follow-
ing fact tells us how to characterise R-embeddable Aronszajn trees usingQ-embeddable
Aronszajn trees. It was first proved in [Bau70].

Fact 2.5. Let T be an ω1-tree. T is R-embeddable if and only if T∗ = ⋃α<ω1
Tα+1 is

Q-embeddable.

Now, we introduce the concept of an M-special Aronszajn tree.

Definition 2.6. We say that an ω1-Aronszajn tree T is M-special if T is isomorphic
to the subtree of {s ∈ <ω1ω|s is 1-1}. We denote the class of all M-special ω1-Aronszajn
trees as AM-sp(ω1).

We use the notation M-special to distinguish special Aronszajn trees defined by
Mitchell in [Mit72] from now more used Definition 2.1. Note that Mitchell’s definition
includes just normal trees in contrast to Definition 2.1. In this sense the notion of a spe-
cial tree is more general than M-special. However, if we consider just normal trees, then
every special normal tree can be represented by an M-special tree. The converse may not
hold in general, see Lemma 2.16.

Lemma 2.7. If T is a normal special ω1-Aronszajn tree, then T is M-special.

Proof. Fix for every α < ω1 a 1-1 function gα ∶ Tα → ω, and write T = ⋃n<ω An,
where An is an antichain for each n < ω.

We define by induction on α < ω1 a tree T′ and an isomorphism i ∶ T → T′, where
T′ is a subtree of {s ∈ <ω1(ω × ω)|s is 1-1}. The isomorphism i will be a union of partial
isomorphisms iα ∶ T � α → T′ � α.

Set T′
0 = {∅} and i1(r) = ∅, where r is the root of T . As we assume that T is normal,

i1 is an isomorphism between T � 1 and T′ � 1.
Suppose that we have constructed iβ ∶ T � β → T′ � β for each β < α. First, if α is

limit, set iα = ⋃β<α iβ and T′ � α = ⋃β<α T
′ � β.
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If α = γ + 1 and γ is a successor, then we define iα by extending iγ setting for each
s ∈ Tγ:

(2.1) iα(s) = iγ(t) ∪ {⟨γ, ⟨gγ(s), n⟩⟩},

where the node t is the immediate predecessor of s and s ∈ An. Let T′ � α = T′ �
γ ∪ T′

γ , where T′
γ = {iα(s)|s ∈ Tγ}. It is clear that each function in T′

γ is 1-1 since each
two comparable nodes must be in different antichains.

If α = γ + 1 and γ is limit, then we define iα by extending iγ setting for each s ∈ Tγ:

(2.2) iα(s) = ⋃{iγ(t)|t < s}.

By (iv) of Definition 1.5, iα is 1-1 and clearly it is also an isomorphism. Let T′ � α = T′ �
γ ∪ T′

γ , where T′
γ = {iα(s)|s ∈ Tγ}. Again it is obvious that each function in T′

γ is 1-1
since it is a union of 1-1 functions with gradually increasing domains.

At the end, set T′ = ⋃α<ω1
T′ � α and i = ⋃α<ω1

iα. It is easy to see that the tree T′

is isomorphic to a subtree of {s ∈ <ω1ω|s is 1-1} by any bijection between ω × ω and ω.
Hence T is M-special. �

Note that at limit steps we use just the assumption that the tree is normal. Hence we
can generalize this lemma toR-embeddable trees. Theproof of the implication from right
to left can be found in [Dev72].

Lemma 2.8. Let T be an ω1-Aronszajn tree. T is normal R-embeddable if and only if
T is M-special.

Proof. (⇒) Let T be a normal R-embeddable. Then T∗ = ⋃α<ω1
Tα+1 is Q-

embeddable and so T∗ = ⋃n<ω An where An is an antichain for each n. The rest of
the proof is the same as the proof of Lemma 2.7 since we used the antichains only in the
successor step.

(⇐) Let T be M-special. We define f ∶ T → R by setting

f (t) =
∞

∑
i=0

𝒳𝒳Rng(t)(i)
10i

,

where 𝒳𝒳X is the characteristic function of a set X ⊂ ω. Since every node of T is a 1-1
function from some ordinal α < ω1 to ω, if s < t then Rng(s) ⊂ Rng(t) and so there is
n < ω such that 0 = 𝒳𝒳Rng(s)(n) < 𝒳𝒳Rng(t)(n) = 1 and 𝒳𝒳Rng(s) � n = 𝒳𝒳Rng(t) � n. Hence
f (s) < f (t). �

By Fact 2.5, if the tree T is R-embeddable then T � S for S = {α + 1|α < ω1} is Q-
embeddable. So it is natural to introduce the concept of S-special for arbitrary unbounded
subset of S ⊆ ω1. The following definition is from [She98].

Definition 2.9. Let S be an unbounded subset of ω1. We say that an ω1-tree T is
S-special if T � S is Q-embeddable, where

T � S = {t ∈ T|ht(t,T) ∈ S},
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with the induced ordering. We say that an ω1-tree T is 𝒮𝒮-special if there is S, an un-
bounded subset of ω1, such that T is S-special. We denote the class of all 𝒮𝒮-special
ω1-Aronszajn trees as Au-sp(ω1).

The following fact from [DJ74] says that if we only consider S-special trees for closed
unbounded subsets S of ω1, we get nothing new.

Fact 2.10. Let C be a closed unbounded subset of ω1. If T is a C-special ω1-Aronszajn
tree, then T is special.

The following Fact 2.11, which can be found in [She98], says that if all Aronszajn trees
are S-special for some given unbounded subset of ω1, then all of them are in fact special.
As an easy corollary, we have by Fact 2.5 that if everyω1-Aronszajn tree isR-embeddable,
then every ω1-Aronszajn tree is Q-embeddable.

Fact 2.11. Let S be an unbounded subset of ω1. If every ω1-Aronszajn tree is S-special
then every ω1-Aronszajn tree is special. In particular, if every ω1-Aronszajn tree is R-
embeddable, then every ω1-Aronszajn tree isQ-embeddable.

Note that 𝒮𝒮-special Aronszajn trees, including special, R-embeddable, and M-special
Aronszajn trees, are not Suslin in the following strong sense: every uncountable subset
of such tree contains an uncountable antichain. This motivates the following definition.

Definition 2.12. We say that an ω1-tree T is non-Suslin if every uncountable subsetU
of T contains an uncountable antichain. We denote the class of all non-Suslin Aronszajn
trees at ω1 as ANS(ω1).

The name of non-Suslin trees is inspired by the fact that every non-Suslin tree is not
Suslin. On the other hand, every tree that is not non-Suslin has a Suslin subtree, as follows
from the next fact that can be found in [Han81].

Fact 2.13. Let T be an ω1-Aronszajn tree. If T is not non-Suslin, then T has a subtree
which is Suslin.

Lemma 2.14. Let T be an ω1-Aronszajn tree. If T is 𝒮𝒮-special, then T is non-Suslin.

Proof. Assume for contradiction that T is an 𝒮𝒮-specialω1-Aronszajn tree which is not
non-Suslin. By the previous fact T has a subtree T′ which is Suslin. Since T is 𝒮𝒮-special,
T′ is 𝒮𝒮-special, too. Hence there is an unbounded subset S of ω1 such that T′ � S =
⋃n<ω An, where An is an antichain for each n. By pigeon-hole principle, for some n < ω
the size of An must be greater than ω. This contradicts the fact that T′ is Suslin. �

To sum up, for general trees we obtain:

(2.3) Asp(ω1) = T(Q)(ω1) ⊆ T(R)(ω1) ⊆ Au-sp(ω1) ⊆ ANS(ω1).

If we consider only normal trees, we get:

(2.4) Asp(ω1) = T(Q)(ω1) ⊆ T(R)(ω1) = AM-sp(ω1) ⊆ Au-sp(ω1) ⊆ ANS(ω1).

In the next section, for each of these inclusions, we examine if there is a model in
which it is proper.
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2.2 Existence

The existence of special Aronszajn trees at ω1 can be proved in ZFC and by Baumgart-
ner’s theorem published in [BMR70] it is consistent with ZFC that every Aronszajn tree
at ω1 is special, so Asp(ω1) = T(R)(ω1) = Au-sp(ω1) = ANS(ω1) is consistent with ZFC.
On the other hand, consistently, each inclusion can be proper.

The following Fact 2.15 was first published in [Bau70]. It says that it is consistent that
there is an Aronszajn tree which is M-special but not special. As a corollary we obtain
that the first inclusion in (2.3) can be consistently proper.

Fact 2.15. Assume ♦. Then there is a non-special Aronszajn tree which is a subtree of
{s ∈ <ω1ω|s is 1-1}. In particular, there is an R-embeddable ω1-Aronszajn tree which is
not special.

Proof. This has been proved by Baumgartner (see [Dev72]). We have extended his
proof to obtain a more general result, see Theorem 3.27. �

The following lemma is a consequence of Fact 2.15 and it shows us that the second
inclusion in (2.3) can be consistently proper.

Lemma 2.16. Assume♦. Then there is anω1-Aronszajn tree, which is 𝒮𝒮-special and not
R-embeddable.

Proof. By Fact 2.15, assuming♦, there is anω1-Aronszajn treewhich isR-embeddable,
but not Q-embeddable. Let α < ω1 be a limit ordinal and let t ∈ Tα. For the chain C =
{s ∈ T|s < t} we add a new node tC such that tC < t and tC > s for all s ∈ C. Consider the
tree T′ which is created by adding such tC for every limit node t. Note that ⋃α<ω1

T′
α+1 =

T ⧵ T0. Now, T′ is not R-embeddable since ⋃α<ω1
T′
α+1 is not Q-embeddable. But T′ is

S-special for S = {α + 2|α < ω1} since T′ � S = ⋃α<ω1
Tα+1 ⧵ T1. �

The claim that the last inclusion in (2.3) can be consistently proper is a consequence
of the theorem published in [Sch14], which says that if ZFC is consistent, so is ZFC + SH2

+ there is an Aronszajn tree T at ω1 which is not 𝒮𝒮-special. If SH holds, then by Fact 2.13
every Aronszajn tree is non-Suslin. Therefore T is non-Suslin and it witnesses that ZFC
+ Au-sp(ω1) ≠ ANS(ω1) is consistent.

3. Special Aronszajn trees at larger κ

3.1 Generalisations ofQ

In this section we consider some common generalisations of Q at higher cardinals.
The following definitions ofQκ andQ∗

κ are taken from [Tod84]. In addition, we introduce
our definition of a generalisation of the real line for higher cardinals because we want to
generalize the concept of an R-embeddable tree (see Definition 2.2).

2 Suslin Hypothesis
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Definition 3.1. Let κ be a regular cardinal. Then
Q∗

κ =({f ∈ ωκ| {n < ω|f (n) ≠ 0} is finite} ⧵ {0},<lex);(3.1)

Qκ =({f ∈ κ2| |{α < κ|f (α) ≠ 0}| < κ} ⧵ {0},<lex);(3.2)

Rκ =({f ∈ κ2|(¬∃α < κ)[f (α) = 0 and (∀β > α)(f (β) = 1)]} ⧵ {0, 1},<lex);(3.3)

where <lex is the lexicographical ordering, 0 (1) denotes the sequence of zeros (ones)
of length ω in (3.1) and of length κ in (3.2) and (3.3).

Note that in the definition ofRκ , we allow all 1’s on a tail, but restrict this configuration
by demanding that in this case there is no greatest α with f (α) = 0.3

Remark 3.2. Note that Qω ≅ Q ≅ Q∗
ω. On the other hand, for κ > ω, Qκ ≇ Q∗

κ ,
even if |Qκ| = κ. This holds, because Q∗

κ does not contain any decreasing sequence of
uncountable length. However, in Qκ there are decreasing sequences of length κ.

In this paper we work mainly with Qκ because it has some nice properties: in par-
ticular, one can generalize Kurepa’s Theorem for Qκ and prove Lemma 3.4 which is very
useful and plays the key role in proving Lemma 3.13. On the other hand, the main advan-
tage of Q∗

κ is that it always has size κ. When we work with Qκ , we need to assume that
κ<κ = κ to control its size.

The following easy lemma tells us that Qκ has the properties which we want from a
generalisation of Q, with the exception that it does not have to have size κ. The proof is
left as an exercise.

Lemma 3.3. The orderingQκ is linear, dense, without endpoints and |Qκ| = κ<κ .
There is an asymmetry in Qκ between decreasing and increasing sequences:
Lemma 3.4. Assume κ > ω is regular.
(i) LetA = ⟨fα|α < λ⟩ be a strictly decreasing sequence inQκ , where λ is a limit ordinal

such that ω ≤ λ < κ. Then A does not have an infimum inQκ .
(ii) Let B = ⟨gα|α < λ⟩ be a strictly increasing sequence inQκ where λ is a limit ordinal

such that ω ≤ λ < κ. Then B has a supremum inQκ .
Proof. Ad (i). Let A = ⟨fα|α < λ⟩ be given. Assume for contradiction that there is the

infimum f ∈ Qκ of A. Since f ∈ Qκ , there is β0 < κ such that for each β ≥ β0 f (β) = 0.
Since λ < κ and κ is regular, there is γ0 < κ such that for each γ ≥ γ0 and for each α < λ
fα(γ) = 0. Let δ = max{β0, γ0}. We define f ∗ = f � δ∪{⟨δ, 1⟩}∪{⟨β, 0⟩ |β > δ}. Clearly,
f ∗ > f . Since f < fα for every α < λ and since δ = max{β0, γ0}, f ∗ < fα for every α < λ.
This is a contradiction because we assume that f is the infimum of A.

Ad (ii). Let B = ⟨gα|α < λ⟩ be given. We define supremum g by induction on β < κ.
For β = 0. Set

g(0) = {1 if ∃α < λ(gα(0) = 1);
0 otherwise.

3 If f ∈ κ2 does not satisfy (3.3) and α is the greatest position with 0, then we can define g ∈ Rκ which is the
immediate successor of f in the lexicographical order: define g exactly as f below α, and set g(β) = 1 for all
β ≥ α. To prohibit this situation (which violates density of the ordering), we choose to disallow such f ’s in
(3.3). If there is no greatest α where f (α) = 0, this problem does not arise.



80

Assume that g � β is defined, then we define g(β) as follows:

g(β) = {1 if ∃α < λ such that gα(β) = 1 and gα � (β + 1) > g � β ∪ {⟨β, 0⟩};
0 otherwise.

First note that g is in Qκ since κ is regular and λ < κ.
Now, we show that g is the supremum of B. It is obvious that gα < g for every α < λ.

Hence it is enough to show that g is the least upper bound of B. Let h < g be given. Then
there is β0 < κ such that h � β0 = g � β0 and 0 = h(β0) < g(β0) = 1. By definition of g
there is α such that gα � (β0 + 1) > g � β0 ∪ ⟨β0, 0⟩. As h � β0 = g � β0 and h(β0) = 0,
g � β0 ∪ ⟨β0, 0⟩ = h � (β0 + 1) and so gα � (β0 + 1) > h � (β0 + 1). Therefore gα > h. �

Note that it was important in (i) of the previous lemma that λ is a limit ordinal < κ.
One can easily find decreasing sequences inQκ of length κ which do have the infimum.4

Now, we present the generalisation of Kurepa’s Theorem for Qκ :

Theorem 3.5. (Generalised Kurepa’s Theorem) Assume κ<κ = κ. Let (E,<) be a par-
tially ordered set. Then the following are equivalent:

(i) E is embeddable inQκ ;
(ii) E is the union of at most κ-many antichains.

Proof. (i) ⇒ (ii) Let f be the embedding. Let {qα|α < κ} be an enumeration of Qκ .
We define Aα = f −1(qα) for each qα ∈ Rng(f ). Obviously, each Aα is an antichain since
f is an embedding.

(ii) ⇒ (i) We assume that ⋃α<κ Aα = E, where each Aα is an antichain. Moreover,
without loss of generality, we may assume that for each β, α < κ, Aα ∩ Aβ = ∅. Let
f ∶ E → κ be a function such thatAα = f −1(α). For x ∈ E define g(x) so that g(x)(α) = 1
if and only if α ≤ f (x) and {y ∈ E|y ≤ x} ∩ Aα ≠ ∅.

Notice that g(x) is in Qκ because g(x)(α) = 1 implies that α ≤ f (x), where f (x) ∈ κ.
Now, we check that g is an embedding. Assume that x < y are in E and x ∈ Aα, y ∈ Aβ

for some β ≠ α. We distinguish two cases.
First suppose that α < β. Then g(x)(α) = 1 and also g(y)(α) = 1 since x < y and

x ∈ Aα. And for all γ < α if g(x)(γ) = 1 then g(y)(γ) = 1 and so g(x) � α ≤lex g(y) � α.
If g(x) � α <lex g(y) � α, then g(x) < g(y) and we are finished. If g(x) � α = g(y) � α,
then we can continue as follows: for all γ > α it holds that g(x)(γ) = 0 since γ > f (x).
Hence g(x)(β) = 0 and g(y)(β) = 1; therefore g(x) < g(y).

Next suppose that β < α. Again for all γ < β, if g(x)(γ) = 1 then g(y)(γ) = 1 and
so g(x) � β ≤lex g(y) � β. Now, we show that g(x)(β) = 0 and g(y)(β) = 1. Assume
for contradiction that g(x)(β) = 1. Then by definition of the function g , we know there
exists z ∈ Aβ and z ≤ x. Hence z < y and this is a contradiction since there are two
comparable elements in Aβ. By the definition of g , g(y)(β) = 1 and so g(x) < g(y). �

Remark 3.6. Note that the assumption κ<κ = κ is necessary just in the proof of (i) ⇒
(ii).

4 Compare withQ: some infinite decreasing sequences have an infimum; since there is no limit ordinal below
ω, the analogue of (i) of the previous Lemma does not appear in Q.
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Remark 3.7. We cannot prove Kurepa’s Theorem forQ∗
κ , for κ > ω a regular cardinal,

since it does not contain strictly decreasing sequence of uncountable length. Consider
the ordinal κ with reverse ordering <∗, i.e. α <∗ β that α <∗ β if and only if β ∈ α for α,
β ∈ κ. Then κ is a union of κ-many antichains and cannot be embedded to Q∗

κ .

Partials orders from Theorem 3.5 have another useful characterisation. The proof of
the following lemma is easy and it is left as an exercise for the reader.

Lemma 3.8. Let κ be regular and let (E,<) be a partially ordered set. Then the following
are equivalent:

(i) E is the union of at most κ-many antichains;
(ii) there is f ∶ E → κ such that if s, t are comparable in E, then f (s) ≠ f (t).

Now, we focus on the partial order Rκ . We show that it has similar properties as R.

Lemma 3.9. The partial order Rκ is
(i) linear, without endpoints;
(ii) Qκ is dense in Rκ ;
(iii) Dedekind complete.

Proof. It is easy to verify that Rκ satisfies (i).
Ad (ii). Let f <Rκ

g in Rκ be given. Let α0 be the least ordinal such that 0 = f (α0) <
g(α0) = 1. By definition of Rκ , there is the least β0 > α0 such that f (β0) = 0. Let
h = f � β0 ∪ {⟨β0, 1⟩} ∪ {⟨γ, 0⟩ |γ > β0}. It is easy to see that h ∈ Qκ and f <Rκ

h <Rκ
g .

Ad (iii). It is enough to show that every increasing sequence with upper bound has the
supremum. First note that each increasing sequence in Rκ has cardinality at most κ<κ
sinceQκ is dense inRκ as we proved in the previous paragraph. Let A = ⟨fα ∈ Rκ|α < λ⟩
for some ordinal λ ≤ κ<κ be given and let f ∈ Rκ be the upper bound of A. Let FC be a
choice function from 𝒫𝒫(Qκ) to Qκ . We define the sequence AQ in Qκ as follows:

(3.4) AQ = ⟨gα ∈ Qκ|gα = FC({q ∈ Qκ|fα < q < fα+1}) and α < λ⟩ .

We show that AQκ
has the supremum g in R and that g is also the supremum of A in Rκ .

We define a function g∗ ∶ κ → 2 by induction on β < κ.
For β = 0. Set

g∗(0) = {1 if ∃α < λ(gα(0) = 1);
0 otherwise.

Let g∗ � β be defined, then we define g∗(β) as follows:

g∗(β) = {1 if ∃α < λ such that gα(β) = 1 and gα � (β + 1) > g∗ � β ∪ {⟨β, 0⟩};
0 otherwise.

Note that g∗ may not be inRκ , but it holds that g∗ ≠ {⟨α, 1⟩ |α < κ} since the sequence
has an upper bound in Rκ .

Now, we need to show that g∗ is the supremum of AQ in (2κ,<lex). However, the
proof of this is the same as the proof of Lemma 3.4 (ii). Note that in the Lemma 3.4 (ii)



82

we used the assumption that the sequence has length less than κ just for showing that the
supremum is in Qκ .

As we mentioned earlier, g∗ may not be in Rκ , but note that g∗ ≠ {⟨α, 1⟩ |α < κ}. If
g∗ is not in Rκ , there is β0 < κ such that g∗(β0) = 0 and g∗(β) = 1 for every β > β0.
Let g = g∗ � β0 ∪ {⟨β0, 1⟩} ∪ {⟨β, 0⟩ |β > β0}. Clearly g ∈ Rκ and there is no function
between g∗ and g in 2κ . Now we define g ∈ Rκ by

g = {g∗ if g∗ ∈ Rκ;
g otherwise.

It is obvious that g ∈ Rκ and since g∗ is the supremumofAQκ
in 2κ , g is the supremum

of AQκ
in Rκ .

To finish the proof of the theorem, it suffices to show that g is also the supremum of
A. The function g is clearly the upper bound of A. Now, we show that g is the least upper
bound. Let h < g . Since g is the supremum of AQκ

, there is q ∈ AQκ
, such that h < q. But

q < r for some r ∈ A by the definition of AQκ
. Hence h < r. �

3.2 Classification

In the previous section we have built the foundations for the investigation of spe-
cial κ+-Aronszajn trees for any regular κ. We introduced the concept of special, R-
embeddable,M-special and 𝒮𝒮-specialω1-Aronszajn trees. Now, we generalize these con-
cepts to higher Aronszajn trees, which are in the center of our interest. When we talk
about an Aronszajn tree in this section, we mean a κ+-Aronszajn tree for some regular
cardinal κ > ω.

Definition 3.10. Let κ be a cardinal. We say that κ+-Aronszajn tree T is special if T is
a union of κ-many antichains. We denote the class of all special Aronszajn trees at κ+ as
Asp(κ+).

As in the previous section, the concept of a special Aronszajn tree has more equivalent
definitions. However, we need to be careful when we talk aboutQκ-embeddability, since
this partial order in general does not have to have size κ.

Lemma 3.11. Let κ be regular. The following are equivalent for a κ+-Aronszajn tree T :
(i) T is special;
(ii) There is f ∶ T → κ such that if s, t are comparable in T , then f (s) ≠ f (t).
Proof. This is a direct consequence of Lemma 3.8. �

Lemma 3.12. Assume κ<κ = κ. Then κ+-Aronszajn tree T is special if and only if T is
Qκ-embeddable.

Proof. It follows from Theorem 3.5. �

Again as in the previous section, we can characteriseRκ-embeddable Aronszajn trees
using Qκ-embeddable Aronszajn trees. This is our generalisation of Fact 2.5.

Theorem 3.13. Assume κ<κ = κ. Let T be an κ+-tree. T is Rκ-embeddable if and only
if T∗ = ⋃α<κ+ Tα+1 isQκ-embeddable.
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Proof. (⇒) Let T be Rκ-embeddable and T∗ = ⋃α<κ+ Tα+1. Let f be the embedding,
t ∈ T∗ and let s ∈ T be the immediate predecessor of t. We define f ′ ∶ T∗ → Qκ as
follows: f ′(t) = q where q ∈ Qκ such that f (s) < q < f (t).

(⇐) Let T∗ = ⋃α<κ+ Tα+1 be Qκ-embeddable and let f be the embedding.
We first define a function g ∶ Qκ → Qκ × Qκ which will “replace” every q ∈ Qκ with

an open interval (g(q)1, g(q)2),5 while preserving the ordering. More precisely, we will
define g by induction on κ and ensure it satisfies the following for all q < q′ in Qκ :

(3.5) g(q)2 < g(q′)1.

Enumerate Qκ as {qβ|β < κ}. We will construct by induction on α < κ embeddings
gα ∶ {qβ|β < α} → Qκ × Qκ which will be used to define the final function g .

As we will see below, at the successor step, we define gα+1 as an extension of gα to qα.
Suppose gα+1(qα) = ⟨q, q′⟩ for some q < q′ in Qκ . In addition to choosing q, q′, fix also
two elements a(qα) < b(qα) in the interval (q, q′) and two sequences as follows: a strictly
increasing sequence of elements in (q, q′) of length κ converging to a(qα) and a strictly
decreasing sequence of elements in (q, q′) of length κ converging to b(qα). We denote
these sequences ⟨a(qα)i|i < κ⟩ and ⟨b(qα)i|i < κ⟩, respectively.

Now we provide an inductive definition of the functions gα, α < κ:
Set g0 = ∅.
Let α be a limit ordinal. Define

gα = {⟨qβ, ⟨a(qβ)α+1, b(qβ)α+1⟩⟩|β < α}.

The idea behind this definition is to take the intervals defined in the previous stages of the
construction and “shrink” them to get more space. The shrinking of the intervals makes
sure that the construction can continue on the successor steps.

At α + 1, define gα+1 by

gα+1 = gα ∪ {⟨qα, ⟨q, q′⟩⟩},

for some suitable interval (q, q′), i.e. for all s < s′ in the domain of gα+1, we should have
gα+1(s)2 < gα+1(s′)1.6

When all functions gα, α < κ, have been constructed, set

g = {⟨qα, ⟨a(qα), b(qα)⟩⟩ |α < κ}.

By the construction, it follows that g is as required.
Now we can finish the proof of the theorem. Define a function i ∶ Qκ → Qκ by

i(q) = r, where r is some element of the open interval (g(q)1, g(q)2). We define an
embedding f ′ ∶ T → Rκ as follows:

f ′(t) = {
i(f (t)) if t ∈ Tα+1 for α < κ+;
sup{i(f (s))|s < t and s ∈ Tβ+1 and β < α} otherwise.

5 g(q)1 denotes the left coordinate and g(q)2 the right coordinate of the pair g(g).
6 When defining gα+1, we need to ensure that we can map qα into an interval which is disjoint from the

intervals gα(β), β < α, while respecting the ordering. Without the shrinking at the limit stages of the
construction, the intervals might converge in a way which prevents the definition of gα+1(qα).
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Now we need to check that the function f ′ is the embedding of T to R. If s < t and s,
t ∈ T∗, then it is easy to see that f ′(s) < f ′(t) because i is order-preserving. If t ∈ Tα
for α limit, then f ′(s) < f ′(t) since f ′(t) is the supremum. The only interesting case is if
s ∈ Tα for α limit and t ∈ Tα+1. Then we need to show

(3.6) f ′(t) = i(f (t)) > sup{i(f (r))|r < s and r ∈ Tβ+1 and β < α} = f ′(s).

This follows from the construction of g . For every r < s it holds that i(f (r)) < q < i(f (t))
where q = g(f (t))1. Hence

(3.7) f ′(s) = sup{i(f (r))|r < s and r ∈ Tβ+1 and β < α} ≤ q < i(f (t)) = f ′(t).
�

Definition 3.14. Let κ be a cardinal. We say that κ+-Aronszajn tree T is M-special if
T is isomorphic to a subtree of {s ∈ <κ+κ|s is 1-1}

The following lemma is a generalisation of Lemma 2.7, hence we left the proof as an
exercise.

Lemma 3.15. Let κ be a regular cardinal. If T is a normal special κ+-Aronszajn tree
then T is M-special.

As in the case forω1, at the limit stepwe use just the assumption that the tree is normal.
Hence we can generalize this lemma to the following lemma. Note that for this we do not
need the assumption κ<κ = κ since we use that the tree ⋃α<κ+ Tα+1 is special instead of
Qκ-embeddable. We explicitly state this lemma here so it is clear that M-special trees are
exactly those trees that are normal and whose successor levels form a special tree, as was
the case at ω1.

Lemma 3.16. Let κ be a regular cardinal. Let T be a normal κ+-Aronszajn tree. Then
T∗ = ⋃α<κ+ Tα+1 is special if and only if T is M-special.

Proof. (⇒) Let T∗ = ⋃α<κ+ Tα+1 be special. Then T∗ = ⋃ξ<κ Aξ where Aξ is an
antichain for each ξ < κ. The rest of the proof is the same as the proof of Lemma 3.15.

(⇐) Let T be an M-special tree. Then T is isomorphic to a subtree T′ of
{s ∈ <κ+κ|s is 1-1} via i. We define f ∶ T∗ → κ by setting f (t) = i(t)(α) for
ht(t,T) = α + 1. Let s < t ∈ T∗. Then ht(s,T) = β + 1 < α + 1 = ht(t,T). Since
i(s) ⊂ i(t), i(s)(β) = i(t)(β). As i(t) is 1-1, i(t)(β) ≠ i(t)(α). Therefore f (s) ≠ f (t).

�

On the other hand, generalisation of Lemma 2.8 requires the additional assumption
that κ<κ = κ since we need to use Generalised Kurepa’s Theorem.

Lemma 3.17. Assume κ<κ = κ. Let T be a κ+-Aronszajn tree. T is a normal Rκ-
embeddable tree if and only if T is M-special.

Proof. It follows by Theorem 3.13 and Lemmas 3.12 and 3.16. �

Unlike special ω1-Aronszajn trees, it is not provable in ZFC that special κ-Aronszajn
trees exist for κ > ω1. Hence we are also interested in the question how the existence
of one kind of special Aronszajn trees influences the existence of other kinds of special
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Aronszajn trees. The following lemma claims that if there are no M-special Aronszajn
trees then there are no special Aronszajn trees at all.

Lemma 3.18. Let κ be a regular cardinal. If there exists a special κ+-Aronszajn tree,
then there exists an M-special Aronszajn tree.

Proof. Let T be a special κ+-Aronszajn tree. We first add one root r such that r < t for
each t ∈ T0. Now we wish to guarantee the condition (iv) of Definition 1.5. Let α < κ+
be a limit ordinal and let C be a cofinal branch in T � α such that there exists node t ∈ T
greater than all nodes c ∈ C. Then we add one extra node tC to the limit level α such that
tC > c for all c ∈ C and tC < t for all t > C, where t > C means t > c for all c ∈ C.

Since for every chain we add one extra node to the limit level, this new tree satisfies
(iv). Denote this tree T′. This tree is normal and T = ⋃α<κ+ T

′
α+1. By Lemma 3.16 the

tree T′ is M-special. �

As in previous section it makes sense to introduce the concept of 𝒮𝒮-special Aronszajn
trees.

Definition 3.19. Let κ be a regular cardinal and S be an unbounded subset of κ+. We
say that the κ+-tree T is S-special if T � S is special, where T � S = {t ∈ T|ht(t,T) ∈ S}
with the induced ordering. We say that a κ+-treeT is 𝒮𝒮-special if there is S, an unbounded
subset of κ+, such that T is S-special. We denote the class of all 𝒮𝒮-special κ+-Aronszajn
trees as Au-sp(κ+).

The proofs of the following lemmas are direct generalisations of proofs of Facts 2.10
and 2.11.

Lemma 3.20. Let C be a closed unbounded subset of κ+, where κ is a regular cardinal.
If T is a C-special κ+-Aronszajn tree, then T is special.

Proof. Let T be a C-special κ+-Aronszajn tree. Then T � C = ⋃ν<κ Aν , where eachAν
is an antichain. Let {aνα|α < κ+} be an enumeration ofAν for each ν < κ. Let {cα|α < κ+}
be the monotone enumeration of C. For α < κ+ and for x ∈ Tcα , we define Sx = {y ∈ T �
cα+1|x <T y}. Since each Sx has size less than κ+, let {sμ(x)|μ < κ} be an enumeration of
Sx . Set

(3.8) Aν,μ = {sμ(aνα)|α < κ+}.

Clearly, Aν,μ is an antichain of T for each ν, μ < κ. Since C is closed unbounded,
T = ⋃ν<κ Aν ∪ ⋃ν,μ<κ Aν,μ. Hence T is special. �

Lemma 3.21. Let κ be a regular cardinal and S be an unbounded subset of κ+. If every
κ+-Aronszajn tree is S-special then every κ+-Aronszajn tree is special.

Proof. Let S = {αμ|μ < κ+} be an unbounded subset of κ+ and T be a S-special κ+
Aronszajn tree. We define a new tree

(3.9) T′ = {⟨t, β⟩ |t ∈ T and β < αht(t,T) and ∀s < t(αht(s,T) < β)}.

The tree T′ is ordered by <T′ as follows: ⟨t, β⟩ <T′ ⟨s, γ⟩ if and only if t < s or (t = s
and β < γ). It is obvious that T satisfies our definition of Aronszajn tree. Hence T′ is
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S-special, i.e. T′ � S is special. Since T is isomorphic to T′ � S = {⟨t, αht(t,T)⟩|t ∈ T}, T
is special. �

Again, note that 𝒮𝒮-special κ+-Aronszajn trees are not Suslin in a strong sense. This
means that every subset of size κ+ of such tree contains an antichain of size κ+. Hence we
can generalize Definition 2.12 and Lemma 2.14.

Definition 3.22. Let κ be a regular cardinal and T be a κ+-Aronszajn tree. We say that
T is non-Suslin if every subsetU of T , which has size κ+, contains an antichain of size κ+.
We denote the class of all non-Suslin Aronszajn trees at κ+ as ANS(κ+).

The proof of following lemma is a direct generalisation of proof of Fact 2.13.

Lemma 3.23. Let κ be a regular cardinal and T be a κ+-Aronszajn tree. If T is not
non-Suslin, then T has a subtree which is Suslin.

Proof. Let T be a κ+-Aronszajn tree, which is not non-Suslin. Then there is a subset
X of T such that |X| = κ+ and X does not contain antichain of size κ+. We define T′ =
{s ∈ T|∃t ∈ X(s < t)}. It is easy to verify that T′ is Suslin. �

The proof of following lemma is a direct generalisation of proof of Lemma 2.14.

Lemma3.24. Let κ be a regular cardinal andT be a κ+-Aronszajn tree. IfT is𝒮𝒮-special,
then T is non-Suslin.

The following theorem is only the summary of what we have showed about the rela-
tive existence of different kinds of special Aronszajn trees. It tells us that the weak tree
property7 at κ+ is equivalent to the claim that there are no M-special κ+-Aronszajn trees
and also to the claim that there are no 𝒮𝒮-special κ+-Aronszajn trees.

Theorem 3.25. Let κ be a regular. The following are equivalent
(i) Asp(κ+) = ∅;
(ii) AM(κ+) = ∅;
(iii) Au−sp(κ+) = ∅.

Proof. Ad (i) ⇔ (ii). The claim from left to right follows from Lemma 3.16 and the
converse follows from Lemma 3.18.

Ad (i) ⇔ (iii). This follows from the definition of 𝒮𝒮-special κ+-Aronszajn tree. �

To sum up:

(3.10) Asp(κ+) ⊆ Au−sp(κ+) ⊆ ANS(κ+) and AM(κ+) ⊆ Au−sp(κ+).

If moreover we only consider normal trees and assume that κ<κ = κ, we get:

(3.11) Asp(κ+) = T(Qκ)(κ+) ⊆ T(Rκ)(κ+) = AM-sp(κ+) ⊆ Au-sp(κ+) ⊆ ANS(κ+).

7 We say that a cardinal κ+ has the weak tree property, if there are no special κ+-Aronszajn trees.



87

3.3 Existence

We are interested in special Aronszajn trees at successors of regular cardinals. While
the existence of a special ω1-Aronszajn tree can be proved in ZFC, at higher cardinals
we need some additional assumption, for example κ<κ = κ or weak square principle.
The first one was used in construction by Specker in [Spe49] and the second one in the
construction by Jensen in [Jen72]. On the other hand, it is possible to find a model with
no special κ+-Aronszajn tree where κ > ω is regular, but this requires much stronger
assumption. Throughout this section we assume that κ is a regular cardinal and κ > ω.

Definition 3.26. Eκ+κ = {α < κ+|cf (α) = κ}

This theorem is our generalisation of Fact 2.15. As a corollary we obtain that the first
inclusion in (3.10) can be consistently proper.

Theorem3.27. Assume κ<κ = κ and♦κ+(Eκ+κ ). Then there is anM-special κ+-Aronszajn
tree, which is not special.

Proof. By ♦κ+(Eκ+κ ) there is a sequence ⟨fα|α ∈ Eκ+κ ⟩ such that fα is a function from α
to α and for any function f ∶ κ+ → κ+ the set {α ∈ Eκ+κ |fα = f � α} is stationary in κ+.
We fix this sequence for the rest of the proof.

We construct the tree T and the function π ∶ T → κ+, which will code the tree in κ+,
by induction on α < κ+. For each α < κ+ we require the following conditions:

(T1) If s ∈ T � α then |κ ⧵ Rng(s)| = κ.
(T2) If s ∈ T � α and x ∈ [κ ⧵ Rng(s)]<κ then there is s′ ⊇ s on each higher level of

T � α such that Rng(s′) ∩ x = ∅.
(π0) πα is a 1-1 map from T � α to κ+ such that s ⊆ t → πα(s) < πα(t) and for β < α,

πβ ⊆ πα.
Let T0 = {∅} and π1 is an arbitrary function from T � 1 = T0 to κ+. It is clear that T0

satisfies both conditions and π1 satisfies (π0).
Let α = β+1. Suppose T � (β+1) and πβ+1 are defined and they satisfy the conditions

mentioned above. We want to construct level Tα. For each s ∈ Tβ we add all one-point
extensions s ∪ {⟨α, ν⟩} of s such that ν ∈ κ ⧵ Rng(s). This is possible by (T1), which
guarantees the existence of κ-many such extensions. Since we add all such extension of s,
for each x ∈ [κ⧵Rng(s)]<κ we can always find t ∈ Tα such that s ⊆ t and x∩Rng(s) = ∅;
therefore T � (α+ 1) satisfies (T2). As T � (β+ 1) satisfies (T1), T � (α+ 1) satisfies (T1),
too. To obtain πα+1, we extend πα arbitrarily such that it satisfies the condition (π0).

Let α be limit. For each β < α, suppose T � β and πβ are defined and they satisfy the
conditions mentioned above. We need to distinguish two cases. First, if α has cofinality
less than κ then we add all possible sequences. We can do that since κ<κ = κ.

Second, ifα has cofinality κ then letT′
α = ⋃β<α Tβ andπ∗

α = ⋃β<α πβ. We construct for
each s ∈ T′

α and x ∈ [κ ⧵ Rng(s)]<κ node sx above s of height α such that x ∩ Rng(s) = ∅.
Let us fix for the rest of the proof a bijection g from κ toQκ . Again, we need to distinguish
two cases. First, if fα ∘ g embeds π∗

α
′′T′

α to Qκ and Dom(fα) = π∗
α

′′T′
α, then set

(3.12) Xα = {(s, x)|s ∈ T′
α & x ∈ [κ]<κ & Rng(s) ∩ x = ∅} .
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For (s, x), (t, y) in Xα, we define (s, x) ≤α (t, y) if and only if s ⊆ t and x ⊆ y. For
each q ∈ Qκ , set

Δα
q = {(s, x) ∈ Xα|g(fα(π∗

α(s))) ≥Q q or

(∀(t, y) ∈ Xα)((t, y) ≥α (s, x) → g(fα(π∗
α(t))) <Qκ

q)} .(3.13)

It is easy to see that Δα
q is cofinal in Xα.

Let s ∈ T′
α and x ∈ [κ ⧵ Rng(s)]<κ be given. First we fix an increasing sequence

⟨αγ|γ < κ⟩ with limit α and α0 = length(s). By induction we construct an increasing
sequence ⟨(sγ, xγ)Δα

g(γ)|β < κ⟩ with length(sγ) ≥ αγ for all γ < κ.
Let s′0 = s and x′

0 = x. By definition of Xα, (s′0, x′
0) is in Xα and as Δα

g(0) is cofinal in Xα,
we can find (s0, x0) ≥α (s′0, x′

0) in Δα
g(0).

If γ < κ is a successor ordinal γ = β + 1 we can proceed as follows. Assume (sβ, xβ) is
defined. By (T1) there is νβ ∈ κ⧵(Rng(sβ)∪xβ). Let x′

β+1 = xβ∪{νβ}. By (T2)we can find
s′β+1 ∈ T′

α such that s′β+1 ⊇ sβ, length(s′β+1) ≥ αβ+1 and Rng(s′β+1)∩x′
β = ∅. By definition

ofXα, (s′β, x′
β) is inXα and asΔα

g(β) is cofinal inXα, we can find (sβ+1, xβ+1) ≥α (s′β+1, x′
β+1)

in Δα
g(β+1).

Let γ < κ be limit. Since γ < κ we can take s′′γ = ⋃β<γ sβ and x′
γ = ⋃β<γ xβ. As κ is

regular, |x′
γ| < κ. Note that Rng(s′′γ ) ∩ x′

γ = ∅, but length(s′′γ ) does not have to be greater
or equal to αγ. However, by (T2) there exists s′γ ⊇ s′′γ such that Rng(s′γ) ∩ x′

γ = ∅ and
length(s′γ) ≥ αγ. By definition of Xα, (s′γ, x′

γ) is in Xα and as Δα
g(γ) is cofinal in Xα, we can

find (sγ, xγ) ≥α (s′γ, x′
γ) in Δα

g(γ).
In the other case, if fα ∘ g does not embed π∗

α
′′T′

α to Qκ , then we proceed similar as
before. Let s ∈ T′

α, x ∈ [κ ⧵ Rng(s)]<κ and ⟨αγ|γ < κ⟩ be cofinal in α with α0 = length(s).
By induction we construct an increasing sequence ⟨(sγ, xγ)|β < κ⟩ with length(sγ) ≥ αγ
for all γ < κ.

Let s0 = s and x0 = x.
If γ < κ is a successor ordinal γ = β + 1 we can proceed as follows. Assume (sβ, xβ) is

defined. By (T1) there is νβ ∈ κ ⧵ (Rng(s) ∪ xβ). Let xβ+1 = xβ ∪ {νβ}. By (T2) we can
find sβ+1 ∈ T′

α such that sβ+1 ⊇ sβ, length(sβ+1) ≥ αβ+1 and Rng(sβ+1) ∩ xβ+1 = ∅.
Let γ < κ be limit. Since the size of γ is less than κ, we can take s′γ = ⋃β<γ sβ and

xγ = ⋃β<γ xβ. As κ is regular, |xγ| < κ. Note that Rng(s′γ) ∩ xγ = ∅, but length(s′γ)
does not have to be greater or equal to αγ. However by (T2) there exist sγ ⊇ s′γ such that
Rng(sγ) ∩ xγ = ∅ and length(sγ) ≥ αγ.

Let sx = ⋃γ<κ sγ. We define the level Tα = {sx|s ∈ T′
α and x ∈ [κ ⧵ Rng(s)]<κ}. It is

easy to verify that T � (α + 1) = T′
α ∪ Tα satisfies the condition (T1) and (T2). Again,

we can extend π∗
α to πα+1 on T � (α + 1) arbitrarily such that it satisfies the condition

(π0).
Finally, set T = ⋃α<κ+ Tα and π = ⋃α<κ+ πα. Then π ∶ T → κ+ is a function such

that s ⊆ t → π(s) < π(t).
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For a contradiction assume that T is special. As we assume κ<κ = κ, by Lemma 3.12
T is special if and only if T is Qκ-embeddable. Therefore there is a function f ∶ κ+ → κ
such that f ∘ g embeds π′′T in Q. Let

C = {α < κ+|α is a limit ordinal and π′′(T � α) = π∗
α

′′T′
α and

f ∘ g � α embeds π∗
α

′′T′
α in Qκ and

(∀s ∈ T′
α)(∀x ∈ [κ ⧵ Rng(s)]<κ)(∀q >Q g(f (π(s)))

((∃t ∈ T)(t ⊇ s & Rng(t) ∩ x = ∅ & g(f (π(t))) ≥Q q)

→ (∃t′ ∈ T′
α)(t′ ⊇ s & Rng(t′) ∩ x = ∅ & g(f (π(t′))) ≥Q q)} .(3.14)

It is easy to verify that C is a closed unbounded subset of κ+. As we assume ♦κ(Eκ
+

κ ),
the set {α ∈ Eκ+κ |f � α = fα} is stationary, so there is α ∈ C such that f � α = fα and
α has cofinality κ. Let t ∈ Tα and let q = g(f (π(t))). By the construction of T , there is
(s, x) ∈ Δα

q such that Rng(s) ∩ x = ∅ and s ⊂ t. Since f ∘ g , and π are order-preserving,
g(f (π(s))) <Q g(f (π(t))) = q.

Since g(f (π(s))) <Q q and g(f (π(t))) ≥Q q, by the definition ofC there exists t′ ∈ T′
α

such that t′ ⊇ s, Rng(t′) ∩ x = ∅ and g(f (π(t′))) ≥Q q. Note that (s, x), (t′, x) are in
Xα and (s, x) ≤α (t′, x). Since (s, x) is in Δα

q and f � α = fα, by (3.13) it must hold that
g(fα(π(s))) ≥Q q. But fα = f � α and so g(f (π(s))) ≥Q q. This contradicts our earlier
inequality g(f (π(s))) <Q q. �

Corollary 3.28. Assume κ<κ = κ and ♦κ+(Eκ+κ ). Then there is an Rκ-embeddable
κ+-Aronszajn tree, which is not special.

Proof. By Lemma 3.17, every M-special κ+-Aronszajn tree is Rκ-embeddable. �

Corollary 3.29. Assume κ<κ = κ and ♦κ+(Eκ+κ ). Then there is an 𝒮𝒮-special κ+-Arons-
zajn tree, which is not special.

Proof. By Lemma 3.16, every M-special κ+-Aronszajn tree is 𝒮𝒮-special for S = {α +
1|α < κ+}. �

The next lemma is a straightforward generalisation of Lemma 2.16 and tells us that the
last inclusion in (3.10) can be consistently proper.

Lemma 3.30. Assume κ<κ = κ and ♦κ+(Eκ+κ ). Then there is a κ+-Aronszajn tree, which
is S-special for some S unbounded subset of κ+ and it is notM-special and by our assumption
it is not Rκ-embeddable.

Proof. The proof is the same as in Lemma 2.16. �

To show that the second inclusion in (3.10) can be consistently proper, i.e. thatAu-sp ≠
ANS, we need to introduce the notion of an ω-ascent path, which is due to Laver.

Definition 3.31. Let κ be a regular cardinal. We say that a κ+-Aronszajn tree T has
the property of the ω-ascent path if there is a sequence ⟨xα|α < κ+⟩ such that

(i) for each α < κ+, xα is a function from ω to Tα;
(ii) if α, β < κ with α < β then ∃n ∈ ω ∀m ≥ n xαm < xβm.
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If the tree T has a cofinal branch, then this branch is a 1-ascent path and it is obvious
that T is not special. But Aronszajn trees do not have cofinal branches. Thus an ω-ascent
path is a pseudo-branch with width ω which prevents the tree from being special.

The following fact is due to Shelah ([SS88]), building onwork of Laver andTodorčević.

Fact 3.32. Let κ > ω be a regular cardinal. Let T be a κ+-Aronszajn tree with the
property of an ω-ascent path. Then T is not special.

Remark 3.33. No such argument can exist for ω1-trees since it is important for the
proof that there is a regular cardinal between ω and κ+. This is the difference between the
specialization forcing for ω1 and for higher cardinals. In the case of higher cardinals, if
T has an ω-ascent path, then any specialization forcing must collapse cardinals. On the
other hand, as was pointed out by a referee, Baumgartner showed that an ω1-tree has a
cofinal branch if and only if it contains an ascent path of finite width. In particular, the
nonexistence of paths of finite width implies that the corresponding specialization forcing
has the ccc.

Corollary 3.34. Let κ be a regular cardinal. Let T be a κ+-Aronszajn tree with the
property of an ω-ascent path. Then T is not 𝒮𝒮-special.

Proof. Let S ⊆ κ+ be an unbounded subset of κ+ and ⟨xα|α < κ+⟩ be anω-ascent path.
Then ⟨xα|α < κ+⟩ � S is ω-ascent path for T � S and by the previous theorem T � S is not
special. �

The construction of the following tree can be found in [SS88].8

Fact 3.35. Let κ be a regular cardinal. Assume �κ . Then there is a non-Suslin κ+-
Aronszajn tree with ω-ascent path.

Hence we can conclude that the second inclusion in (3.10) can be consistently proper.

Corollary 3.36. Let κ be a regular cardinal. Assume �κ . Then there is a non-Suslin
κ+-Aronszajn tree T such that T is not 𝒮𝒮-special.

Proof. It follows from Corollary 3.34 and Fact 3.35. �
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