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Bacterial Resistance in Hospital-Acquired 
Infections Acquired in the Intensive  
Care Unit: A Systematic Review

Walter Martinez Loaiza1, Anny Katheryne Rivera Ruiz1, Cristian Camilo Ospina Patiño1,  
Mónica Chavez Vivas2,3,*

A B S T R AC T
Purpose: In this review we present the status of the prevalence of bacteria resistant to antibiotics and the main antibiotic resistance genes 
that are reported in infections acquired in intensive care units (ICU) around the world.
Methods: A systematic review based on the PRISMA guide was carried out, from the Science Direct, Redalyc, Scopus, Hinari, Scielo, Dialnet, 
PLOS, ProQuest, Taylor, Lilacs and PubMed/Medline databases. Inclusion criteria of this review were original research study published in a 
scientific journal in a 10-year time span from 1 January 2017 and 30 April 2022.
Results: A total of 1686 studies were identified, but only 114 studies were considered eligible for inclusion. Klebsiella pneumoniae and 
Escherichia coli resistant to carbapenems and producers of extended-spectrum β-lactamases (ESBL) are the most frequently isolated 
pathogens in ICUs in Asia, Africa and Latin America. The blaOXA and blaCTX were antibiotic resistance genes (ARG) most commonly 
reported in different geographic regions (in 30 and 28 studies, respectively). Moreover, multidrug-resistant (MDR) strains were reported in 
higher frequency in hospital-acquired infections. Reports of MDR strains vary between continents, with the majority of publications being 
in Asia and between countries, with Egypt and Iran being highlighted. There is a predominance of few bacterial clones with MDR phenotype, 
for example, clonal complex 5 Methicillin-Resistant Staphylococcus aureus (CC5-MRSA) circulates frequently in hospitals in the United 
States, clone ST23-K. pneumoniae is reported in India and Iran, and clone ST260 carbapenemase-producing P. aeruginosa in the United 
States and Estonia.
Conclusion: Our systematic review reveals that ESBL- and carbapenemase-producing K. pneumoniae and E. coli are the most problematic 
bacteria that are reported, mainly in tertiary hospitals in Asia, Africa, and Latin America. We have also found propagation of dominant 
clones with a high degree of MDR, becoming a problem due to its high capacity to cause morbidity, mortality and additional hospital costs.
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INTRODUCTION

Antibiotic resistance is defined as the ability of the bac-
terium to avoid the action of the antibiotic, which can be 
done by modifying target proteins due to point mutations 
or by acquisition of resistance genes through mobile ge-
netic elements (1–5). This resistance can be accelerated by 
the incorrect and indiscriminate use of these drugs, which 
leads to multiple resistances in different strains of bacte-
ria, with the consequent increase in hospital-acquired in-
fections (6–8), that can have great influence to the health 
of the world population.

In the last decade, the increase in antimicrobial resis-
tance in ICUs has been reported, mainly due to the spread 
of these multidrug-resistant (MDR) bacteria (8–12). MDR 
is defined as resistance to more than one agent in three 
or more antimicrobial categories, extensively-drug resis-
tant bacteria (XDR), is defined as non-susceptibility to at 
least one agent in all but two or fewer antimicrobial cat-
egories (i.e., bacterial isolates remain susceptible to only 
one or two categories), and pan-drug resistant bacteria 
(PDR) is defined as non-susceptibility to all agents in all 
antimicrobial categories (9). The situation is complicated 
by the presence of so-called “High-Risk Clones (HiRCs)”, 
which corresponds to few lineages of bacteria that have 
the ability to adapt and remain for long periods of time in 
the hospital environment. Some of these clones would be 
involved in the appearance of resistance mechanisms that 
affect new antimicrobials. The development and speed of 

spread of HiRCs would have been potentiated by the high 
use of all antibiotics during the COVID-19 pandemic, as 
proposed by several researchers (13–15).

The risk factor of development of infection caused by 
antibiotic-resistant bacteria is hospital stay, especially in 
ICU. Patients in these facilities usually receive intensive 
antibiotic therapy and a lot of hands-on care, and their 
special condition makes them vulnerable to acquiring bac-
teria with various types of resistance (15, 16).

The objective of this review was to find the status of 
prevalence of bacteria resistant to antibiotics caused an 
infection in ICU around the world. The second aim was to 
find what antibiotic resistance genes (ARG) are reported 
in the same infections acquired in ICU, in order to con-
tribute to the strengthening of antibiotic resistance con-
trol policies.

METHODS

Systematic search of various electronic databases such 
Science Direct (Elsevier), Redalyc, Scopus, Hinari, Scielo, 
Dialnet, PLOS, ProQuest, Taylor, Lilacs and PubMed/Med-
line was conducted to retrieve relevant published articles. 
Online library repositories of different institutions were 
also searched. The process of retrieving and including data 
closely followed PRISMA guidelines (Preferred Reporting 
Items of Systematic Reviews and Meta-Analyses) as shown 
in Figure 1. Relevant MeSH terms and keywords were used 
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to retrieve all relevant articles from the above-listed data-
bases. The keywords and MeSH terms used were: “antibi-
otic resistance”, “antimicrobial resistant strains”, “Multi-
drug-resistant”, “antibiotic resistant bacteria”, “antibiotic 
resistance genes (ARG)”, and “hospital-acquired infec-
tions”. Studies published from 1 January 2017 and 30 April 
2022 were included. We excluded review articles, system-
atic review, meta-analyses, editorials, policy statements, 
research exclusively in child populations, and those with 
data collection commencing prior to 2017. A full list of the 
data elements extracted from each study are reported in 
supplementary material.

RESULTS AND DISCUSSION

STUDY CHARACTERISTICS
Out of a total of 1686 unique records were screened, 
114 studies met our inclusion criteria (Fig. 1). The maximum 
number of studies were found in Asia (n = 42), of which 
nine (7.9%) were conducted in China. From studies with 
specific diseases, the most common sample were urine 
(n = 92), blood (n = 86) and respiratory secretions (n = 76).

Most of the articles report bacteria with resistance to 
antibiotics based on conventional methods (as disk diffu-
sion method, Double disc synergy test, dilution methods, 
Epsilometer test), especially in countries of Africa (2, 11, 
17–34), Asia (35–60) and Latin America (1, 6, 61–66). Phe-
notypic detection of antibiotic resistance by Disk Diffusion 
Method was reported in 60.5% of the total studies, followed 
by the Vitek 2 system (18.4%). Most studies (79.6%) used 
the CLSI as the breakpoint reference guidelines (18.4%) 
(Table 1). The most commonly used molecular methods for 
the study of bacterial resistance corresponded to the con-
ventional PCR technique (refers to the basic type of PCR 
reaction) (40.4%). A low number of reports (11.4%) were 
found that use last generation molecular methods (such as, 
Next Generation Sequencing, which is the large-scale DNA 
sequencing technology that allows the analysis of entire 
genomes or specific genes).

DISTRIBUTION OF ISOLATES 
Figure 2 shows distribution of bacterial species in clinical 
samples. K. pneumoniae (n = 57) and E. coli (n = 51) were 
the most reported bacteria, especially in urine samples, 

Tab. 1 The number of studies about bacterial identification method, phenotypic and molecular detection method in the present  
systematic review.

Characteristics No of studies References
Bacterial Identification method
Morphology / Biochemical testing 30 (26.3%) 1–4, 6, 11, 13, 15, 17–21, 34–42, 60–62, 66, 67 
API 7 (6.1%) 21, 27–30, 75, 76
VITEK® 17 (14.9%) 4, 14, 15, 25, 35, 66, 75, 77–86
MALDI-TOF 18 (15.8%) 5, 12, 14, 15, 22, 66, 67, 69, 71, 73, 74, 76, 79, 87–90
COMBO DISC, QUBIT® 2.0 FLUOROMETER 1 (0.9%) 91
Not mentioned 1 (0.9%) 92
Phenotypic detection method
Disk Diffusion Method (Kirby Bauer disk diffusion  
method / Mueller Hinton agar) 69 (60.5%) 2–4, 6–9, 11, 12, 14, 16–37, 39–59, 61–74

Double disc synergy test 2 (1.8%) 26, 29
Dilution / test-broth microdilution / MicroScan  
autoSCAN-4 automated System 18 (15.8%) 12, 13, 70–74, 77, 80, 89, 93–100

E Test 3 (2.6%) 21, 38, 70
VITEK® 2 21 (18.4%) 14, 15, 25, 34, 75, 78, 79, 87, 89, 101–111
Neo-Rapid CARB 1 (0.9%) 8
Automated system Phoenix™ AST/ID 7 (6.1%) 20, 112, 37, 13, 88, 108, 109
MALDI-TOF (mass spectrometry) 8 (7%) 14, 22, 31, 46, 70, 71, 86, 90
Molecular detection method

PCR assay (conventional PCR, multiplex PCR) 46 (40.4%) 2, 9,17, 18, 20, 22, 25–32, 34, 36, 39–41, 47, 49–51, 
54, 55, 57, 58, 62, 63, 67–72, 86, 95–97, 101, 109–114

RT-qPCR 5 (4.4%) 14, 48, 51, 71, 104
ERIC-PCR (or rep-PCR, box PCR) 5 (4.4%) 51, 25, 28, 64, 81
pulse field gel electrophoresis (PFGE) 7 (6.1%) 7, 8, 15, 38, 79, 89, 97
multilocus sequence typing (MLST) 7 (6.1%) 6, 10, 63, 96, 97, 106, 107
Sequencing by Sanger ABI 3730/ ABI PRISM®3500,  
whole genome sequencing (WGS)/ Illumina sequencing 13 (11.4%) 26, 37, 44, 47, 57, 58, 64, 72, 89, 104, 108, 109
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most of them presented often resistance to fluoroquinolo-
nes, ampicillin, co-trimoxazole and cephalosporins (3, 4, 
11, 17, 21, 26, 33, 39, 54, 62, 64, 73, 85, 110). Moolchandani 
et al., recommends not using these antibiotics for empiri-
cal therapy of urinary tract infections acquired in ICUs in 
South India; instead, they suggest considering imipenem, 
pipericillin-tazobactam, amikacin, and nitrofurantoin for 
initial therapy with prompt de-escalation after culture 
and sensitivity results are received (3).

K. pneumoniae was also the most reported in blood 
samples, respiratory secretions, and swabs from wounds 
(n = 49, 46, 40, respectively). In blood samples, E. coli, Pseu-
domonas aeruginosa, and Acinetobacter baumannii were re-
ported in 36, 31, and 28 articles, respectively. An important 
feature among these Gram-negative bacteria was the pro-
duction of extended-spectrum β-lactamases (ESBL) and 
carbapenemase.

Among Gram-positive bacteria, Methicillin-Resistant 
Staphylococcus aureus (MRSA) was the most reported in 
blood and urine samples in 25 and 19 studies, respectively, 
followed by Vancomycin-Resistant Enterococcus (VRE) in 
17 and 15 studies, respectively. Urine samples from which 
the MRSA was isolated corresponded to a urine catheter 
positioned in the bladder or in the ureter (2, 7, 13, 19, 49, 
59, 82, 84, 93, 108).

There are a large number of studies reporting MDR 
pathogens in different parts of the world, which would 
explain the factors that trigger the increase in epidemic 
outbreaks, morbidity and mortality, with significant direct 
and indirect costs (8, 10, 11, 12, 15, 17, 29, 34, 37, 50, 62, 65, 
68, 87, 91). The most frequently reported MDR microor-
ganisms in this last decade were found among isolates of 
K. pneuomaniae, E. coli, P. aeruginosa, A. baumannii, SARM 
and VRE. The number of reports of MDR microorganisms 
varied geographically, with the highest number of reports 
being made in Asia (25 studies) and the lowest number be-
ing in North America (3 studies). These differences occur 

not only between continents, but even between countries, 
with the highest number of reports recorded in Egypt (in 
8 studies) and Iran (in 7 studies). Infection in elderly pa-
tients, long duration of hospitalisation, use of broad-spec-
trum antibiotics and long-term or continuous use of a 
single antibiotic have been recognize as risk factors for 
development of infection caused by MDR pathogens as 
suggested by Buetti et al. (16).

Hypervirulent K. pneumoniae (hvKp) is an emerging 
pathotype that is more virulent than classical K. pneumo-
niae. hvKp carry plasmids with genes that code for a large 
number of virulence factors (such as the capsule that pro-
tects bacteria from both phagocytosis and lethal serum 
factors, fimbriae, lipopolysaccharides and siderophores) 
and resistance to heavy metals (copper, silver, lead and 
tellurite) (27, 46, 106). Although hvKp strains are usually 
susceptible to most antimicrobials, an increased preva-
lence of MDR-hvKp nosocomial strains, including carbap-
enemase-producing strains has already been described, 
mainly in patients with healthcare-associated infections 
in Egypt (27, 114), India (44), Iran (46), and China (101). 
Further limiting the range of therapeutic alternatives, 
since the dissemination of a hypervirulent strain in hos-
pitalized patients could have serious consequences, it is 
recommended to implement contact precautions against 
suspicion.

Another important aspect found in this review was 
the report of Stenotrophomonas maltophilia and Coryne-
bacterium striatum, which have been reported in recent 
years among the group of MDR opportunistic pathogen 
as a cause of infection particularly among hospitalized 
patients. 

S. maltophilia is an opportunistic pathogen that has 
high intrinsic and acquired antimicrobial resistance, 
among the therapeutic options to treat infections due to 
MDR-S. maltophilia is trimethoprim-sulfamethoxazole. 
However, some strains resistant to this antibiotic are 
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already reported with prevalences between 2.4% and 10.7% 
in hospitals in Egypt (29), China (43), Iran (47, 48), North 
America (74, 95), and Mexico (83).

C. striatum is considered a normal component of the 
human skin and mucosal microbiota, however, it is fre-
quently cited as a pathogen of hospital-acquired infections 
in some hospitals in Tunisia (76) and China (86). A high 
prevalence of MDR-C. striatum isolates (>50%) was re-
ported in these hospitals, supporting the idea that it is an 
emerging MDR-bacterium.

DISTRIBUTION OF ANTIBIOTIC RESISTANCE  
GENES (ARG)
A total of 50 types of ARG were found in this systematic 
review. Asian hospitals present bacterial isolates with the 
greatest diversity of detected ARGs, followed by Africa, 
Europa, Latin America and North America. The highest 
ARG diversity was reported in bacteria that were causing 
hospital-acquired infections from Asia and Africa

In Asia, 80 ARGs were reported, distributed in 31 types, 
including bla (conferring resistance to β-lactam antibi-
otics) (27.5%), aac (cause resistance to aminoglycosides) 
(8.8%), and tet (cause resistance to tetracyclines (5%). In 
Africa, 47 ARGs distributed in 22 types are reported, bla 
gene was reported in 30.4%, followed by the aac gene with 
8.7%. However, in some bacteria the mechanism of resis-
tance to antibiotics is mainly mediated by chromosomal 
mutations, as is the case of C. striatum, all quinolone-resis-
tant isolates showed mutations in the gyrA gene as report-
ed in hospitals in Tunisian (76) and China (86).

Studies in Europe reported 24 types of ARGs with a 
higher abundance of bla genes (17.1%), followed by genes: 
acc, mph (cause resistance to macrolide), qepA (encodes an 
efflux pump that reduces susceptibility to fluoroquino-
lone), sul (cause resistance to sulfonamides), aad (cause 
resistance to aminoglycosides), aph (cause resistance 
to streptomycin), and ddl (mutations in this gene con-
fer D-cycloserine resistance) (5.7% each), while in Latin 
America, of the 15 types of ARGs found in this review, 
20.8% correspond to the bla genes followed by acc, aph, sul, 
tet, and mcr (cause resistance to colistin) (8.3% each). Al-
though only 2 types of ARGs were reported in North Amer-
ica, they present greater abundance compared to reports 
in other parts of the world, the bla gene represented 83% 
and vanA/B (cause resistance to vancomycin) (16.7%).

The highest number of ARGs (n = 24) was detected in 
S. aureus, followed by K. pneumoniae (20 ARGs), A. bauman-
nii (16 ARGs), and E. coli (14 ARGs) (Fig. 3).

The bla genes were reported in 53 studies and distrib-
uted in 11 bacterial species, representing 46.5% of the 
AGRs found in this systematic review. K. pneumoniae was 
the most reported with bla genes (28 studies), followed by 
E. coli (21 studies), and P. aeruginosa (12 studies). The bla 
genes were also detected in other emerging MDR organ-
isms, such as C. striatum, all penicillin resistant isolates 
were positive for the bla gene in Tunisian hospitals (76).

The blaOXA subtype (cause production of oxacillinases 
and resistance to β-lactam antibiotics, including carbap-
enems) is the most reported in this group (30 studies), fol-
lowed by blaCTX (cause production of cefotaxime-hydro-
lyzing β-lactamase and resistance to β-lactam antibiotics, 

Fig. 3 Abundance and diversity of antibiotic resistance genes (ARG) in individual bacteria.
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especially cefotaxime and ceftriaxone) (28 studies) and 
blaTEM (cause production of narrow-spectrum β-lact-
amases and resistance to to penicillins and early ceph-
alosporins) (25 studies). The ARGs aac was reported in 
15 studies (13.2%) and sul in ten studies (8.8%). However, 
resistance to aminoglycosides presented the greatest di-
versity of ARGs (aac, smeD/F, aad, ant, arm rmt, aph, msr).

Plasmids and others active mobile elements such as 
transposons and integrons are horizontal gene trans-
fer vehicles, that give bacteria great capacity to adapt to 
changes in the environment. These mobile elements play 
a crucial role in the dissemination of ARGs in populations 
of pathogenic bacteria, favoring multiresistance. The most 
frequent antibiotic resistance genes, such as genes coding 
the production of ESBL, are located in plasmids. Recent 
studies point to plasmid-mediated transfer in hospitals in 
Africa (17, 19, 25–28, 33, 52, 101), Asia (35, 40, 42, 45, 57, 
94, 98, 105), Latin America (63–65), Europe (67, 72, 91), and 
North America (89, 100, 103).

Other types of ARGs located on plasmids have been 
reported, such as the mcr-1 gene they have been detect-
ed in isolates of A. baumannii and P. aeruginosa resistant 
to colistin (41, 58, 97). The aac and ant genes responsible 
for aminoglycosides resistance were detected in isolates 
of K. pneumoniae (19), VRE (20, 36), S. maltophilia (48) and 
E. coli (50), and fos genes, which confer resistance to fosfo-
mycin, have been reported on plasmids and active mobile 
genetic elements of E. coli (54), K. pneumoniae (79, 54, 56, 
72, 104) and MRSA (59, 96). 

Next type of active mobile elements such as trans-
posons and integrons have also been shown to be very ef-
ficient in the propagation of AGRs in bacteria that cause 
infections in the ICU. In MDR A. baumannii, the transport-
able elements, Tn2006, Tn2007, Tn2008, and Tn2009, play 
a key role in the transfer of the blaOXA-23 gene. Isolates 
with Tn2006 has been detected in predominantly in Iran 
(113), while Tn2008, and Tn2009 in China (90, 106). Also, 
high frequency of MDR pathogens harboring class 1 and 
2 integrons have been detected in K. pneumoniae (9, 14), 
A. baumannii (10, 65, 57, 77, 90, 113), P. aeruginosa (18, 94, 
101), and E. coli (38, 64, 110).

GENETIC DIVERSITY OF ANTIBIOTIC RESISTANT 
ISOLATES
Bacteria that cause hospital-acquired infections are 
chracterised by a genetic structure composed of a high 
genotypic diversity, but a predominance of several clones 
can be found. Whole genome analysis (WGS)-based anal-
ysis on MDR and ESBL-positive E. coli evidenced high ge-
netic diversity in hospitals in Benin (22) and Bangladesh 
(35). However, a study conducted in Mozambique using 
ERIC-PCR analysis revealed that despite evidence of high 
genetic diversity among E. coli isolates, there was a pre-
dominance of few clones adapted to the hospital environ-
ment, what would they probably be HiRCs (17). Similar 
findings were reported in hospitals in Ethiopia (25) and 
Colombia (64). Analysis by pulsed field gel electrophore-
sis (PFGE, technique used to produce a DNA fingerprint 
for a bacterial isolate) also supports these findings: among 
the great diversity of pulse types (ST), ST405 and ST1284 

circulate mainly in hospitals in Lebanon (38), while ST131 
in Bangladesh (35) and USA (89, 100).

The genetic structure of A. baumannii shows a similar 
behavior. MLST analysis performed on clinical isolates 
of carbapenem-resistant A. baumannii identified carriers 
of blaOXA-23, belonging to ST2 circulating in hospital set-
tings in South Africa (77), and ST195, ST540, and ST208 in 
China (90).

The phylogenetic analysis using WGS in A. bauman-
nii showed that all isolates analyzed in a hospital in Iran 
belonged to the same clade, within lineage 2 of global 
clone1 (113).

The population structure of K. pneumoniae is more 
heterogeneous than that observed in isolates of E. coli and 
A. baumannii, which emphasizes the opportunistic nature 
of these species. The results obtained among KPC produc-
ing K. pneumoniae also reflect the well-known dominance 
of ST258 clone in USA (100). Multilocus sequence typing in 
carbapenem-resistant K. pneumoniae strains showed that 
ST15 was prevalent in Portugal (4), ST395 in France (69), ST11 
in China (106, 107), and ST14, ST5188, ST1861 in Iran (98).

The GWAS analysis that was performed on KPC-pro-
ducing K. pneumoniae isolates from epidemic outbreaks 
in hospitals in Switzerland during 2013 and 2015 revealed 
low variability among isolates, contrary to the results giv-
en by plasmid analysis. Each epidemic outbreak was dom-
inated by clone ST512, which was probably adapted to the 
antibiotic therapy used at the time (72).

GWAS analysis was also performed on HvKp strains 
obtained from hospital-acquired infections in Indian, and 
showed that these strains evolved in few clones (ST23, 
ST240, and ST2319 (44). The study by Sanikhani et al, in 
two Iranian teaching hospitals also detected clone ST23 
in all hvKp isolates (46).

The number of carbapenemase-producing P. aeruginosa 
strains has also been increasing in medical settings in ICUs 
(18, 24, 28, 32, 43, 101). ST1816 has emerged and evolved 
in the medical environment of Japan (99), and ST260 is 
the most frequent in hospitals in USA and Estonia (5, 91, 
respectively), mostly with a MDR phenotype.

In relation to Gram-positive pathogens, it is reported 
that MRSA strains are leading causes of hospital-acquired 
infections in the United States, and clonal complex 5 (CC5) 
is the predominant lineage responsible for these infections 
(74). ST772-t657 is the most reported MRSA clone in tertia-
ry hospitals in Pakistan (59), and ST239-t030 is detected in 
all cases of hospital-acquired infections in Yunnan Prov-
ince of China, it belongs to ‘Turkish clade’ from Eastern 
Europe (96). Genetic relatedness of MDR-E. faecium iso-
lates in university hospitals in Serbia was established by 
Multiple-locus variable-number tandem-repeat (VNTR) 
analysis (MLVA), which revealed polyclonal setting with 25 
unique MT profiles, which are either single-locus or dou-
ble-locus variants of clones MT-340 and MT-159, known 
to cause infections in hospitalizied patients in Serbia. 
These are isolates that have most likely been selected by 
antibiotic pressure and develop in hospital-adapted clones 
that occur sporadically (109). Using PFGE analysis, Kohler 
et al. demonstrated a high clonality in strains of Entero-
coccus spp. causing bacteremia in several Canadian ICUs 
(112).
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Among the mechanisms to control problematic patho-
gens in ICUs, some authors propose implementing close 
surveillance and detection of resistant pathogens, changes 
in resistance pattern, s as well as applying strict cleaning 
protocols, antibiotic administration policies and adequate 
control guidelines to the specific conditions for each hos-
pital (5, 7, 8, 13, 15, 24, 66, 81).

Our study provides information on the epidemiological 
behavior of pathogens that cause infections in adult ICUs. 
Disadvantage of our study is that the studies used for the 
analysis were heterogeneous and some studies did not re-
port ARGs or did not perform genetic diversity analyses. 
There were very few reports that used state-of-the-art mo-
lecular techniques to carry out the analysis of the genetic 
structure of bacteria isolated from nosocomial infections.

CONCLUSIONS

In this systematic review it is evident that K. pneumoniae 
and E. coli were the most reported in urinary tract infec-
tions, bacteremia and pneumonia in hospitals in Asia, Af-
rica and Latin America, being the production of ESBL and 
carbapenemases mediated by blaOXA and blaCTX genes, 
the mechanism of resistance most common in these bacte-
ria. However, it is evident that there are important differ-
ences between regions, such as the reports of P. aeruginosa 
in Europe and North America as the second most preva-
lent pathogen after K. pneumoniae or E. coli, respectively. 
The main concerns about MDR-pathogens are usually 
associated with gram-negative bacilli, ESBL, and carbap-
enemase-producing strains of E. coli and K. pneumoniae, 
as well as carbapenemase-producing P. aeruginosa and 
A. baumannii. Among gram-positive nosocomial patho-
gens, MRSA and VRE are often reported. In some ICUs 
around the world there is a marked presence of MDR, XDR 
and PDR organisms, shows great diversity, probably due to 
the selective action exerted by the use of intensive empir-
ical antibiotic therapy. However, there is a predominance 
of few clones that have adapted efficiently to the hospital 
environment: mainly CC5 MRSA strains are leading causes 
of hospital-acquired infections in the United States (74). 
Clone ST23 KPC-producing K. pneumoniae is isolated from 
infections in India (46) and Iran (47) and ST260 carbap-
enemase-producing P. aeruginosa is the most frequent in 
hospitals in United States (85) and Estonia (91) and have a 
great ability to survive for a long time. These are the high-
risk clones that must be closely monitored due to their 
spread ant to the greater capacity to cause additional mor-
bidity, mortality, and hospital costs. 
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