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MODEL THEORY AND FOUNDATIONS OF LOGIC

PAVEL ARAZIM*
Dept. of Logic, Faculty of Arts, Charles University in Prague 
* E-mail: pavel.arazim@centrum.cz

ABSTRACT
Despite its popularity, model theory based on Tarski’s insights is in need of deeper
philosophical reflection. A wide range of stances towards it was proposed, some see-
ing it as project based on fundamental misconceptions, some asserting it reveals the
very essence of logic. I would like to balance these extreme views. Of particular
importance will be its connection to the problem of logical constants. Identifying
logical constatnts enables us to identify logical forms of statements and thus brings
us close to demarcating logic. We will see that solving this issue in ways suggested
by model theory has its considerable costs, while the gains are rather modest.
Keywords: model-theory, completness, substitution, interpretation, representation

It would not be but a pure folly to doubt that the Tarskian semantics andmodel theory
is a discipline of great importance which contributed significantly to the development of
logic and mathematics. Thus it is only natural that it belongs among the most important
parts of introductory lectures on formal logic and this should not change. So far, so good.
Yet powerful as it is, it remains unclear how we should see it, how to interpret it philo-
sophically. What is actually its place in logic? Is it the core of logic and other ways how
to approach it, most prominently from the perspective of proof-theory, belong to logic
only derivatevely? Or is the other way round? Or are they perhaps on a par, as far as their
logicality is concerned?

This question would be, of course, uninteresting had there not been significantly dif-
ferent outcomes in logic and in philosophy of logic which depend on which answer to it
we prefer. The topic of this article will be one of these answers, which depends exactly on
seeing the model theory as essential for logic and which was taken by some significant
figures of this discipline, including most prominently Tarski himself (in his particular
case this was a later turn in his thought, but I will have more to say about this later). The
idea is that in the model theory we can precisely specify what makes something a part
of logic and thus we can delineate this discipline, ensuring that we will let neither too
much, nor too little in. And although Tarskian models are essential to the semantics of
classical first-order logic, these model-theoretic demarcations typically have it that logic
is actually a much broader discipline. To be sure, taking model theory as the core of logic
has got many further consequences, yet it is mainly on those regarding demarcation of
the discipline I will focus on.

We will have to distinguish our main topic from a different, albeit related and actu-
ally more general one. The general topic which we will touch, as well, is the adequacy of
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model theory for the study of logic in general. The main point of reference in this regard
is Etchemendy (1990). Now, if we reject the radical criticism towards the model theory
presented in this Etchemendy’s book, we will have settled at least that the model theory
can be indeed of some use in logic. Such a situation will naturally call for a closer spec-
ification of what we can indeed use it for. And the bold thesis which Tarski presented
later, is that in the model-theoretical framework we can say what the bounds of logic
are, i.e. demarcate it as a specific discipline and thus, among perhaps other things, show
something important about its relationship with mathematics.

We will see that there is both a debate about this kind of demarcations (which I will
fromnowon callTheTarskian demarcation) in general, as well as an internal debate about
how it should be exactly spelled out. I will present the gist of both these debates and take
a stance towards them.

1. The Tarskian semantics

Let us now begin with recalling what the shape of Tarskian semantics is and see what
its main virtues are. Locus classicus of his approach is the 1936 article Tarski (1936) in
which he claims the inadequacy of merely proof-theoretic approach to logic. Among
other things, Gödel’s incompleteness theorems show that it is bound to undergenerate,
i.e. to fail to display the relation of consequence in its completeness. Thus a quite different
approach is required, one which pays more attention to the meanings of the expressions
used in inferences. In other words, a (more)1 semantic approach. And one which is con-
cerned with what these expressions stand for.

I pressupose that the reader is familiar with standard semantics of classical first-order
logic, that is the predicate logic with existential and general quantifier. This antecedent
knowledge should serve as a common ground, even if I redescribe it in potentially contro-
versial manners. First of all, Tarski wants to generalize a substitutional approach, which
was heralded already by Bolzano. According to a perhaps somewhat anachronic inter-
pretation of Bolzano – and according to Tarski as well – we have to identify a group of
elements of our language as logical constants, that is as a specifically logical part of our
language.2 It is a separate issue, which elements these should exactly be and we will come
to this peculiar problem later. But let us suppose, at least for the sake of this exposition,
that it is the standard connectives (conditional, conjunction, disjunction and negation)
and the two classical quantifiers.

Nowwehave to define the notion of a correct substitution, as it is essential for Bolzano’s
and for Tarski’s approach. Here again, I rely on reader’s knowledge of this notion. The
idea is that in a given argument or an inference, we consider all its substitutional variants,
where the variant is defined by mostly obvious restrictions, such as that only a predicate

1 Although there were such tendencies among the logical positivists, we do not have to say that proof-
theoretical approaches abstract from meanings completely. This is not so from the standpoint of infer-
entialism and also the later development of proof-theoretic semantics shows that the positivist views were
somewhat hasty.

2 It is anachronic because Bolzano spoke rather of extralinguistic ideas.
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can be substituted for a predicate, an individual term for an individual term and so on.
Not that there is no room for significant differences in opinions about what counts as a
correct substitution, let us remind ourselves that for example Carnap in Carnap (1931)
instisted that rules for substitution should be much more restrictive, such as to prevent
the substitution of prime number for emperor in Julius Ceasar was an emperor. Obviously
enough, such restriction would be difficult to formulate in any systematic way. But there
are viable options of more fine-grained substitution rules than those for classical first-
order logic which we deal with right now. But this is a seperate issue. Let us pressupose
the notion of substitution operative in classical first-order logic.

The notion which we are after in logic is, of course, that of a valid argument. So,
according to the substitutional account, an argument from a set of sentences to a sentece
is valid if and only if all for all its legitimate substitutional variants it holds that either one
of the premises is false or the conclusion is true. A legitimate substitutional variant of
a given sentence – and then of a given a argument – is one, in which we substitute only
for the expression which are not logical constants (so far, once again, we countenance
the classical two quantifiers and the truth-functional connectives) and we substitute only
according to the settled restrictions.

It is well known that this approach is problematic because it makes the inference de-
pendent on the language we employ. When the language is not large enough, i.e. if it
does not have a large enough vocabulary, it may well happen that we do not have enough
substitutional variants of some plausibly invalid arguments to be able to declare them as
actually invalid. Obvious examples can be found which are not much weakened even by
the vagueness of the notion of intuitively valid/invalid arguments.

Tarski’s approach seeks to circumvent this excessive dependence on language. John
Etchemendy brings a highly controversial and, as we will see, not completely fair por-
trayal of the Tarskian endeavour. He describes Tarski’s attempt at improving the substi-
tutional approach as proceeding by binding the relation of logical entailment not just
to a given actual language but to all possible languages. Even this is inaccurate and
leads to Etchemendy’s overall inaccurate interpretation, but it is useful heuristically. Thus
Etchemendy takes Tarski as trying to step outside the actual language by considering its
relation to the world. We do not consider as much substitutional variants of a given argu-
ment, but ratherwe imagine that theword–world relationsmight change. In our example,
individual terms might refer to different objects than they do and predicates may refer to
different relations, where relation is understood extensionally. This leads to the familiar
notion of a model or structure, the reader’s acquaintance with which I pressupose.

So much now for introducing the Tarskian semantics. I would like to note that there
is an interesting discussion about whether this standard form it received is what Tarski
actually intended. There are authors who think that he did not countenance a plurality of
models as we do today, but rather just one univesal model. This would make his position
generally much more vulnerable. But the most serious forms of criticism of Tarskian se-
mantics are aimed at the nowadays usual form and thuswe can afford to put this historical
issue aside.
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2. Pressupositions of Tarkian semantics and varieties of critique

Despite the fact that Tarski’s analysis has become a part of standard logical curriculum,
there has been serious criticism, which nevertheless always respected the achievements of
the model theory. Given its proven usefulness, the issue is not whether or not we should
somehow accept and use it but rather what to make of its use, how to interpret it. I will
like to contribute to the view that the model-theory should be given maybe a little more
modest interpretation than usual. But first, let us see the critique of it which is perhaps
most direct and most prominent. The one which is due to John Etchemendy.

2.1 Etchemendy – exposition

Etchemendy claims that in logical semantics we have to choose between two basic
alternatives, namely doing the interpretational or the representational semantics. Tarski
is then supposed to be doing the first one. Let us explain these terms briefly.

In the interpretational semantics the models do not model the ways the world might
be but only how the linguistic items might relate to it. Thus a singular term such as the
president of the Czech Republic might be interpreted differently in different models, not
because a different person can in fact have that political function, but merely because it
can mean e.g. what the term the highest mountain in the world means in our actual lan-
guage. Theworld is thus taken as it is. In the representational semantics, wemodel rather
the ways the world itself might be, thus differing in the reference of the aforementioned
individual term simply because different individuals (perhaps more than one at a time or
none at all) may be the president. Now, it is obvious that both approaches are dependent
on taking some vocabulary as logical, i.e. such that we do not consider either different
interpretations of it or the ways the world might make it refer to something else.3

Now, according to Etchemendy, Tarski adheres to the interpretational semantics. This
claim was much disputed by various authors, but Etchemendy claims that it is indeed the
very core of Tarski’s approach andhis criticism thus cannot be seen asmerely a historically
interesting thesis about potential confusion of Tarski himself but has to be regarded as an
attack on thewhole traditionwhich it produced. Let us beginwithmarking Etchemendy’s
basic objections.

On the one hand, the interpretational semantics, even if it would give extesionally
acceptable results, i.e. declare as valid all and nothing but the logically valid arguments as
logically valid, it would, according to Etchemendy, succeed only by chance, as it reduces
the logical validity of some sentences to the material validity of some other ones. Thus
we claim that the argument

John is a man and John is single
John is single

3 It may be good to note right now that it is not reasonable to see the sematics of classical logic as either
represenational or interpretational but rather as both at the same time. But we will get to this later.
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is logically valid because of themerelymaterial validity (that is the truth of the conclusion
or falsity of one of the premises) of all the instances of the following scheme

ϕ ∧ ψ
ψ

or perhaps of

P(j) ∧ S(j)
S(j)

If we take just the ∧ as logical, then this is plausibly materially valid for all the argu-
ments of (one of the) indicated forms. But that gives us no assurance that the universal
claim about all the arguments of this form is not true only accidentally. Etchemendy
invites us to consider an argument of the form

John was the president of the USA
John was a man

Now if we allow just the individual term John to vary in the interpretation, then we
will still get a an argument such that all its variants are materially valid. And this makes
the argument logically valid, despite the fact that it obviously should not be declared as
such. It has no materially invalid variants only by chance, so to say. Yet the Tarskian
approach cannot distinguish it from the previous, presumably logically valid, one. Or
so Etchemendy claims (it immediately comes to mind that the problem here lies in not
letting the right expression vary in the interpretation but let us delay this a little bit yet).

If we, just for simplicity’s sake, now shift the focus on logically true sentences instead
of logically valid arguments, it is obvious that universally quantified sentence’s being true
does not guarantee the logical (or necessary, a priori or perhaps formal) truth of its in-
stances, but only that they are simply true.

Etchemendy calls this alleged Tarski’s step Tarski’s fallacy. Tarski wanted to reduce the
complicated and unclear notion of logical consequence, which was traditionally seen as
involved in the difficult epistemological issues, by proposing a relatively clear-cut techni-
cal criterion. But his attempt is ultimately fallacious.

I have to say that I ama little bit puzzled by themost basic suppositions of Etchemendy’s
attack. It appears that the problem is supposed to be hidden in the fact the logical truth
of one sentence, say A, is founded in the plain truth of all its variants and therefore in
the plain truth of the general statements about the variants (i.e. all the interpretational
variant of A are true), not latter’s being logically true, as well. But I think that any special
epistemological status of any claim can potentially be formulated by another sentence
which itself is in fact just true. This explaining sentence has to be formulated in some
metalanguage which is stronger with regard to the targeted epistemological features of
claims. Or should we perhaps demand that the general sentence be true logically and not
just simply true in themetalanguage? I am not sure whether such a demandmakes sense,
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just as it hardly makes sense to speak of “trying to try” or “believing that I believe” (as is
nicely shown in Brandom (1994)). Maybe the very question whether the metasentence
claiming that the original sentence has got only true interpretational variants is true log-
ically or just materially does not really make a good sense at all. And it was not an issue
in the first place, as we were examining the logical status of just the original one.

Nevertheless, Etchemendy claims that the interpretational semantics gets the exten-
sion wrong, which I think would be, should it be indeed the case, a good reason for refus-
ing it. But let us see some of the alleged instances of extensional inadequacy Etchemendy
has in mind. Before that, it should be mentioned that it is in general far from clear what
the talk of extension of the logical consequence relation being right or wrong is supposed
to mean. I suspect it is simply too naive to suppose that our intuitions hide a totally
clear-cut set of logically valid arguments and logically true sentences and that there are
no border exemplars, which we ultimately have to simply choose whether to declare or
not as logical.

Now for the examples of overgeneration of interpretational semantics. Let us say that
there are at least two things (whatever that means) which can be denoted by the individ-
ual terms. This means that the following formula(and by applying this analysis, also the
sentences which are its equivalents in natural languages)

∃x∃y((x ≠ y))

will be declared as logically true. Now, such a sentence can apparently be true only by
accident and therefore it makes no sense to declare it as a logical truth4. The way the
Tarskian analysis escapes having to make this false decision is by varying the domain
we quantify over, but that amounts, in Etchemendy’s view, to changing the meaning of
the existential quantifier, which compromises the original claim that it will be treated as
a logical constant. Etchemendy brings more examples of overgeneration, but they are
mostly of the same spirit, so we can confine our attention to this simple one.

Etchemendy thus has to interpret Tarski as saying that there must be just one universe
of discourse, it must be somehow given what there is in the most general sense. Even
if there might be some indications that Tarski might have wanted to head in this direc-
tion, it is hardly understandable how such a position can be supposed to be held by the
proponents of the Tarskian semantics. Indeed, if his attack is not supposed not to be di-
rected merely at Tarski and thus not to be of mainly historical interest (and I have already
noted that there are debates regarding what Tarski originally had in mind), it is hard to
see who it is supposed to be aimed at. Nobody is against using different models and it
does not make much sense to see them as submodels of one great supermodel (which
might perhaps lead to the charge of changing the meaning of the existential quantifier, as
Etchemendy formulates it). When adopting a model, there is in principle no claim that
the members of the domain have to be existent in the sense of being real. We are free
to choose a domain containing pegases and treat it as an intended model of our theory
of imaginery creatures. And by doing so, we do not anyhow claim their existence, just
suppose it, thus modelling some contexts of argumentation.

4 It should rememebered, though, that some authors would not oppose such a verdict. Frege though that
logic guarantees existence of objects, such as natural numbers.
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A problem arises though, namely how many models are we supposed to be using. The
problem of possible overgeneration of logical consequences is that we might not have
enough models. And it depends on the set theory we use as a background which models
there are. This seems to be first of all a problem of indeterminacy, because we cannot say
which class ofmodels is somehow the right one. There aremore ways to react to this. One
of them is, I believe, to regard this as reflection of some genuine vagueness of the notions
which are being formalized and thus renderedmore precise. This apologetic stancemight
not appeal to every one, but it is at least not obviously wrong and further discussion is
needed here. I find Etchemendy’s claim that the axiom of infinity is ad hoc as worthy of
attention, though. Be it as itmay, it certainly helps to getmore plausible verdicts about the
logical entailment relation and about the logical truth of statements (thus no statement of
the form there are at most n objects for a finite nwill be declared as logically true5). So the
most counterexmples Etchemendy considers do not arise. Or better, they do not arise in
the case of classical first-order logic, which we were considering so far. This is, to remind
us, not just because of the happy choice of the underlying set theory, but also because of
the particular choice of the logical vocabulary.

Etchemendy follows Tarski in believing that in case of first order logic we have the
problem of undergeneration. The invalidity of the ω-rule is claimed to be something in
need of a remedy both by Tarski in 1936 and Etchemendy. And thanks to Gödel’s incom-
pleteness theorems there is no way we can hope to solve the problem at the level of the
classical logic. Yet here we can dispute whether it is a genuine example of undergener-
ation. Tarski and Etchemendy thus in fact seem to favor a logic which will validate the
logicist thesis that arithmetic is a part of logic, as it was presented in Frege (1884). But as
interesting as this project was, it is not clear that its fulfillment is so desirable. It is still
possible to stick with the more traditional Kantian view that mathematics and logic are
indeed separate disciplines. The omega-rule is thus an argument whose validity is not
purely logical, but involves our mathematical faculties as well. We have to use the pure
intuition to see its validity. Depending on one’s philosophical background, one can see
the (in-)validity of the ω-rule either as an asset or as a problem for a given logic.

Be it as it may with the problem of undergeneration, the overgeneration appears to
be much more of a threat. But only so if we interpret the model-theoretic semantic in
the interpretational manner suggested by Etchemendy. And that interpretation is rather
a straw man for him to attack, as I will try to show.

3. Representational semantics

Another possibility to interpret the Tarskian semantic is, according to Etchemendy, to
interpret it representationally. We have already seen a sketch of what that would involve.
A given argument is declared valid in case it remains valid under any changes in the
world. Described in this way, as it is described by Etchemendy in his 1990 book, it means

5 To make sense of Etchemendy’s claim, we cannot say that the axiom of infinity prevents such statements
from being logically true by enabling infinite models, as they would not be true even if we had just finite
models, though of unbounded finite cardinality. Etchemendy pressuposes the whole time that these finite
models must be taken from one big universal model – the world – which then has to be infinite.
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merging logic with some sort of general metaphysics. Clearly this does not look like
a promising explanatory strategy, as it would involve claryfying the logical notions by
means of perhaps even more obscure methaphysical ones. As difficult as it might be to
decide about the logical validity of arguments, should it be determined by these criteria,
we can see that this wouldmost likely mean running the logical validity together with the
analytical one. The inference from

John is a bachelor

to

John is an unmarried man

obviously has to remain valid, no matter how the world changes, as far as the changes
do not involve our language (whatever that means). But I think that since at least the
appearence of Quine’s Two dogmas of empiricism we should beware of such a construct.
Does Etchemendy’s distinction between the interpretational and representational seman-
tic make really sense? And can we accept taking all the analytical entailments as logical
ones? I suspect that it was one of the tasks of logic to distinguish precisely between ana-
lytically and purely logically valid entailments.

Yet Etchemendy eventually refrains then from this concept of representational seman-
tics and uses the term differently in Etchemendy (2008), partly perhaps as a reaction to
criticism, which was issued by Gila Sher in her article Sher (1996). There she accuses
Etchemendy of presenting us with a false dilemma, having to choose between the two
basic kinds of semantics. Indeed, I think most people acquainted with Tarskian seman-
tics will say, when forced to decide whether it is interpretational or representational, that
it is somewhere in between6. Indeed, sentence such as

Every bachelor is unmarried

is not declared as a logical truth, perhaps mostly because of the fact that the actual lan-
guage could have worked differently, many other senteces are not declared logical truths
rather because of the way the world could have been, but we cannot in general allot the
responsibility just to the language or to the world.

It should be noted that Etchemendy refuses the Quinean attack at the synthetic/ana-
lytic distinction, claiming that the attack is based on too narrow a conception of logic.
And here we come to the meaning Etchemendy later gives to the represantional seman-
tics7. Under this new description he actually endorses it. Logicians, according to this
view, always study the inferential properties only of certain expressions, for example the
classical connectives and the two classical quantifiers and consider the situations when

6 As should be clear already, we are putting aside the disputes about Tarski’s opionons in the 30’s and talking
about the model theory in its modern shape. Saying that it is somewhere in between the two approaches is
a somewhat simplifying expression of what is better expressed in MacFarlane (2000), namely that various
models model different contexts. That is, not necessarily interpretations or states of affairs.

7 Though it is perhaps a little dubious why he calls it so. His exposition can be found in Etchemendy (2008).
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the members of the other parts of the vocabulary, such as bachelor or unmarried man
change their denotation. And herewith we come to the problem of logical constants.

4. Logical constants

Logical constants can be characterized as the elements of language which determine
the logical properties of sentences, the only ones, which, as Quine puts it in Quine (1986),
occur in logical truths or logical entailment relations essentially. The problem is that it is
not clear which elements of the language should be counted as logical constants. Tarski
himself expresses in the 1936 article the opinion that the division between logical andnon-
logical constants cannot be completely arbitrary, but it might be impossible to demarcate
the logical constants quite principally, as well.

Etchemendy thinks that the choice of logical constants is indeed arbitrary, because
every element of language has some logical properties and it is only up to us, which col-
lection of linguistic items we want to study from the logical point of view. He calls the
problem of finding the right set of logical constants a red herring. Every element of lan-
guage has got some specific logical properties and it is up to us whether we find it useful
to study them. It is thus very well possible to study for example the logic of “color-words”,
which typically involves inferences such as

This apple is red all over its surface
This apple is not green all over its surface

Or inferences such as

This apple is red
This apple is coloured

The traditional logical constants were historically given special treatment only because
their logical properties are particularly important or particularly amenable for logical
analysis. Now, this approach is of course a possible one, but it obviously makes the very
notion of logic very vague. Or rather very broad. Logic is thus transferred into a general
study of inference. It is thus important that Etchemendy does not regard inferences such
as

Socrates is a man
Socrates is mortal

as an enthymeme. This brings him close to positions of Robert Brandom. But what drives
him far away from Brandom’s position is that he does not endorse logical expressivism,
which is a corollary of the fact that he does not think that logic has got a specific vo-
cabulary. He probably also does not agree with Brandom’s identification of meaning
of an expression with its inferential properties. Meaning can hardly be, according to
Etchemendy’s picture, constituted by a position a given sentence – and derivatively also its
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constituents – have in the overall inferential web. Without logical expressivism it is mys-
terious how inferentialism could work. Thus his view of meaning seems to be irreducibly
representationalist. And such a view has faced many problems in the recent decades of
philosophy of meaning.

Keeping that aside for now, we should say that there are ways how to characterize
logical constants in the Tarskian framework, ways which are vulnerable to criticism but
are not completely arbitrary, thus at least partly fulfilling Tarski’s original desideratum.
The core of the proposal comes from Tarski himself, from his lecture, given well after his
original articles about semantics, namely Tarski (1986). In it he generalizes the Klein’s
Erlangen programme of demarcating notions of various geometries.

5. Invariance criterion

The key notion in this Tarskian enterprise of demarcating logical constants is that of
invariance. For example, the notions of Euclidian geometry, such as being an isosceles, are
invariant under permutations of the universe of points which preserve similarity. A per-
mutation of the points naturally induces a permutation of the sets of points, of sets of sets
of points and so forth (the permutations on higher levels). Thus a similarity-permutation
is one which maps a given triangle onto another triangle, which can be proportionally
smaller but remains an isosceles if and only if the original one was such and so forth.8

Now the first attempt to define logical notion is to say that they are the ones which
are invariant under all the permutations. The argument starts off with the premise that
logical notions should be the most general ones. Now, when we relax our demands on
the class of permutations, under which the notions of a given discipline are supposed
to be invariant, we get an increasingly general discipline. Logic therefore goes as far as
is possible in this setting. Here it actually seems that Tarski is speaking about a single
universe (the “world”), which might give support to the earlier mentioned Etchemendy’s
interpretation of his endeavour. Yet this approach needs to be ammended, as it would
allow for example the quantifier ∃∀, which would behave as an existential quantifier in
case there are some cats and as the universal one otherwise. It would be thus indeed
invariant under all permutations, but it indeed feels strange to accept it as a logical notion.

This problem was nevertheless fixed, as later authors, such as Sher, began to consider
not just all the permutations of a given domain, but rather bijections between various
domains. Sher calls this typically an isomorphism, but she does not mean that it respects
the interpretation of non-logical symbols in a givenmodel, that is preserves the properties
of the members of the universe, rather it just preserves the properties of higher level-
objects (sets of objects, sets of sets and so on), i.e. those which are induced from the
original domain of the given structure. Let us see which notions thus get counted as
logical.

To begin with, no individual constant passes the test. If we have e.g. the constant 0
in the language of arithmetics, it can be mapped e.g. to 1 even in the same structure of
natural numbers, that is in the standard model of Peano arithemetic. Of the first-level

8 A more systematic and less hasty exposition can be found in Tarski (1986).
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predicates (or sets) we get counted the universal relation and the empty relation, from
the first-level binary relations identity, the non-identity (that is the complement relation
to that of identity) and so forth.

When we start talking about the quantifiers, understood as second-order predicates
(the predicates of predicates, or sets of sets), the list gets significantly extended. First of all
the two classical quantifiers, that is the existential and the universal one clearly pass the
test. A non-empty set get clearly mapped on a non-empty set by any bijection between
two structures, as well as an empty one. The same consideration holds for the universal
set. But we can go futher and consider any quantifiers regarding the cardinality. Thus
any quantifier demanding that a set of objects satysfying a given formula has got a certain
cardinality is declared as logical. Just for illustration consider

ℵ1xϕ(x)

But we can generalize even more. The traditional quantifiers are, from our point of
view, sencond-level unary predicates. But we can consider also second-order predicates
of higher arity, for example the relation most(thus being able to formalize such proposi-
tions asMost A’s are B’s.). Andwe can also consider unary second-order predicates, which
are applied to first-order relations of higher arity than one, say the binary ones. Or we
can have hybrid relations, which are applied for example to an individual and a predicate,
such as the relation of membership, understood not as a relation between elements of the
universe but between the elements of the universe and sets of elements thereof.

Gila Sher in her Sher (1991) presents the results of this approach in a very comprehen-
sive manner. The book is thus reccomendable for those who want to get a more exact
idea of the results of this demarcation. Yet we have now seen what might at least give the
basic flavor of what we get. Now, can we be happy with such a result? When it comes
to the problem of extensional adequacy, it is clear that overgeneration is much more of a
danger than undergeneration in this case. It can even be shown that any structure can be
characterized by the means of the bijection-invariant operators, among other the stan-
dard model of Peano arithmetic, see Bonnay (2008). What are we to make of this? There
are authors who see this as a mark of adequacy of this demarcation, such as Sher, and also
ones who see it also a clear mark of problem, such as Dennis Bonnay.

5.1 Virtues of the demarcation

This approach gives a demarcation which is very precise and systematic. From a cer-
tain point of view, given by Sher, the classical logic, confined to its two quantifiers, ap-
pears to contain a relatively arbitrarily small fragment of what the whole system, which
she calls universal logic has to offer. For example the cardinality-quantifiers are very
similar to the two classical ones from the set-theoretic point of view. The system she
countenances is actually still a first-order logic, as it does not contain the second-order
quantifiers, it might be called the generalized first-order logic9. Or rather generalized

9 Of course, this demarcation based on invariance can be exted to higher-orders and Tarski originally does
exactly this. Yet Sher shows that it is actually quite enough to consider just the first-order generalized quan-
tifiers.
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first-order logics, as wemay choose to work in smaller systems, such as the classical logic,
or the classical logic enhanced just by the quantifier “there are infinitely many” or “there
are uncountably many” etc. As we speak in the case of merely propositional logic of the
completness of the connectives, i.e. that e.g. the negation together with disjuction are
capable of expressing all the boolean functions, so we can speak in a slightly figurative
manner also of the completness of the first-order logic. The universal logic which we just
sketched can be thus seen as complete with respect to what can be expressed by themeans
of first-order quantifier-operations defined over structures.

Despite the mentioned similarity between the two cases, the contrast is great, as well.
As we content ourselves with just two (or, of course, one) connectives in the case of com-
pletness of the propositional logic, in the case of first-order logic we need a host of quan-
tifers which is very difficult to oversee (at least as difficult as to oversee the set theory).
Sher claims that although this approach blows logic up to an unprecedented degree and
makes it thus immensly complex, it compensates for this fact by being principled, i.e. by
being based on a single and clear principle. Informally said, logic is a discipline which
abstracts from the identity of objects, all objects are equal for it. This might remind us
of Kant’s conception of logic. Kant claimed that logic abstracts from the relationship of
cognition to its object. This probably cannot be said of the universal logic Sher proposes.
This logic treats of a relationship of cognition to objects, though in a very general way,
surely not of relationship to any concrete objects.

But even this might be slightly doubtful. Of course, we have to accept the specific un-
derstanding of object, i.e. the member of domain of some model-theoretic structure and
not, for example, a set theoretical construction on these objects. An existential quanti-
fier or any of the generalized ones can be seen as operation on the structures and as such
perhaps also as an abstract object. This is not a refutation but it shows that this approach,
not much surprisingly, pressuposes that the notion of an object is already settled. It is up
to the reader to decide whether logic can be build upon such a presuposition.

Anyway, Sher praises general logic for displaying the form of our reasoning. Logic
becomes the discipline of the formal. Certainly we can choose to understand formality
as what is captured by this generalized logic. I suspect that any non-mathematical or
intuitive notion undergoes some changes when it gets treated mathematically, at least in
the sense of being made more precise and thus bereft of its vagueness which might have
contributed to its importance and vivacity.

But there is one larger problem. Or perhaps two related ones. The first one might
be the concern with possible overgeneration. Again, such an issue typically cannot be
decided definitely, as it is not clearwith respect towhat the given logic is supposed to over-
or undergenerate (some sort of “right” relation of logical consequence). Yet in this casewe
see that a lot of set theory has creeped in. Indeed, the situation recalls the second-order
logic and Quine’s dictum that it is a set theory in sheep’s clothing. Perhaps logic should not
be able to speak of such things as various infinite cardinalities. For one thing, it might
jeopadize a status which is often attributed to it, namely being topic-neutral. I believe
that the set theory is a topic and a large one! Logic is thus to contain vocabulary, which is
relevant only to one specific discipline, which also seems hardly acceptable. Yet of course,
it will depend on broader philosophical stances towards logic, whether one sees this as
problematic. It is possible to renounce the topic-neutrality as a desideratum of logic.
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The more acute, though related worry is that should this all be logic, then it would
somehow lack real foundation. After all, the set theory does not seem to be a safe foun-
dation for lots of reasons. In a way, we do not really understand what the quantifier ℵ1
means, since we do not know whether the continuum hypothesis is true. Actually, since
it was shown to be independent of the axioms of ZF in (classical) first order logic, it is
even quite reasonable to say that we cannot declare the continuum hypothesis neither as
true nor as false. By this I do not mean only that we cannot know whether it is true or
false but rather that it itself is neither true nor false. In order to say either, we would have
to know what the real model of set theory is, which I believe is not the case. We actually
have no way of veryfying that there is even any model at all.

Again, similarly to the case of the second-order logic, we can even formulate in the
purely logical language of Sher’s universal logic a sentence which is equivalent to the
continuum hypothesis. Logic thus has to declare CH either as true or false, which is
very hard to swallow. Sher tries to defend her system in a similar way in which Shapiro
tries to defend the second-order logic, charging its opponents of “foundationalism” in
Shapiro (1991). Sher claims in her article Sher (1999) that when we try to explicate logic,
it is bound to lose its character of foundation of all knowledge, it has to be made partly
dependent of something, which helps to explain it. This much, I believe, is true. Yet of
course the question remains how complicated can the tool, e.g. the set theory, which we
use to explicate logic be. In general, it is up to us and our preferences, though founding
logic on something as complicated as the set-theory seems to be too much. We might be
prepared to revise some of our intuitions about logic as a foundation of cognition, but
this amounts rather to changing the subject that offering a novel account of logic.

Furthermore, this criterion does not rule out some very dubious quantifiers, because
it pays attention, so to speak, only to the quantifier’s good behaviour on structures of
every cardinality separately. We can thus think of a quantifier, which behaves as an exis-
tential one on finite models and as a universal one on the models of infinite cardinality.
Furthermore. We can think of quantifiers which are extensionally equivalent to, say, the
existential quantifier, but have obviously a different meaning. For example a quantifier,
which is – taken as a second-order predicate – true of a set under the conditions that it is
non-empty and water is H2O. Nice overview of these examples of overgeneration can be
found in MacFarlane (2009).

Indeed, this criterion is, as John Macfarlane calls it in MacFarlane (2000), actually
not semantic, but a presemantic one, as it does not deal with the relationship between
the extension of logic operators and linguistic items, by which they are supposed to be
denoted. Gila Sher asserts that logic is indeed dealing only with the extensions of our
linguistic expressions. Yet it is difficult to see why such a restriction should be reasonable.
Indeed, it almost appears as an inversion of the Kantian restriction that logic should not
speak about the relationship between cognition and its objects.

6. Final assessment

Does this all mean that Tarski’s approach to logic is incorrect or flawed? We have to
be prepared to accept that every attempt to demarcate logic is bound to be only partially
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successful, since the guiding intuitions are too vague and may always produce new ob-
jections against individual proposals. Yet we have seen that there are many objections
this specific approach has to face. Not that there are no possibilities to defend it or to
amend it. It worth mentioning that Dennis Bonnay is, among others, trying to generalize
the notion of invariance and speaks of invariance not just under bijections or isomor-
phism but also under partial isomorphism and so forth. He thus shows that it is possible
to reduce a lot of the problematic interconnections of logics based on invariance criteria
with what should be rather extra-logical affairs and especially the dependency on prob-
lematic set-theoretical assumptions such as the continuum hypothesis. Even the classical
first-order logic can be characterized by means of invariance criteria, namely notions in-
variant undermonadic surjective functions Bonnay (2008). These are for themselves very
interesting results which give us the new possibilities of understanding the various logical
systems and understand what the difference between the classical logic and its Tarskian
amplifications – including the second-order logic – ammounts to.

As I mentioned in the beginning, Tarskian semantics surely is a powerful and handy
tool for studying various logical systems. Yet it seems hardly acceptable to see it as reveal-
ing the essence of logic (perhaps nothing can achieve such a goal). Yet in the case of the
first-order logicwe have the happy circumstance that it is complete. Or perhapswe should
use a different term, such as axiomatisable. As Etchemendy points out in Etchemendy
(1990), the term completeness suggest that the model-theory is something more basic
and secure, something the axiomatisation is to be tested against. And I see his sugges-
tion to look at things from the opposite perspective as a very healthy one (this idea is
developed in Peregrin (2006) and Peregrin (2014)). This means regarding the axiomati-
sation as something, which can be seen as being certainly in the realm of logic, at least in
the sense that the axioms and inferential rules are of themselves plausibly logically valid.
Then the model theoretical system of classical first-order logic gets its foundation by the
completeness theorem. Yet this cannot be of itself a sufficient argument in favor of some
kind of exclusiveness the classical logic. First of all, the notion of plausibility of the de-
ductive system is problematic, invoking the traditional notion of an axiomatic system as
a system of self-evident truths, which is hardly tenable, given the many alternative log-
ics. The second problem is that in the Tarskian semantic we can formulate systems which
are stronger than the classical logic and still axiomatisable, such as the system of clas-
sical logic plus the there are uncountably many quantifier. And here the problems with
dependency on the set-theory and epistemological ill-foundedness reemerge.
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ABSTRACT
The goal of this paper is to present a prospective way to ‘translate’ normal default
rules into the framework of action models logic. At the beginning we introduce
default logic and normal default logic with their main properties and, separately,
actionmodels logic. Then a ‘translation’ of normal default rules in a slightlymodified
action models logic is presented.
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1. Reasoning with default rules

Using the word reasoning we mostly mean ‘private’ act of a subject.1 Common rea-
soning that we do all the time is often based on two kinds of information. The first one,
hard information, is information that we are obliged to accept; we are sure of it, it is our
knowledge and trusted data. The other one, soft information, is something that ‘typically
happens’, it is very likely that things go that way. Reasoning based exclusively on hard in-
formation would be ideally deductive. However, it is not possible in common reasoning.
There are many typical situations that are produced by our experience. Some of them are
in contradiction, some of them are incomplete. Nonetheless, we have to do conclusions
even if there is a lack of hard information. Such conclusions can be out of the scope of
classical (deductive) consequence relations.

Let us imagine that we know that Anne is a student of a faculty of arts. A typical
student from a faculty of arts does not likemathematics and we could conclude by default
that Anne does not like mathematics. The knowledge that Anne attends a faculty of arts
together with our prejudice that students from this faculty do not like math can form a
(default) ‘rule’:

If AnneStudentOfArtFaculty, then ¬AnneLikeMath under condition that
the conclusion ¬AnneLikeMath is not in a conflict with our current
knowledge.

Later we obtain an information that Anne studies logic. Well, if she studies logic, she
might like mathematics. Similarly with this information, we can formulate a ‘rule’:

1 Let us call a ‘reasoning subject’ an agent. The word ‘private’ will be discussed later on.
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IfAnneStudentOfLogic, thenAnneLikeMathunder condition that the con-
clusion AnneLikeMath is not in a conflict with our current knowledge.

More formally, if we put hard information together, we obtain a set (of facts)

Γ = {AnneStudentOfArtFaculty, AnneStudentOfLogic}

and our reasoning about math’s popularity of Anne can follow rules like these:2

AnneStudentOfArtFaculty ∶ ¬AnneLikeMath
¬AnneLikeMath

AnneStudentOfLogic ∶ AnneLikeMath
AnneLikeMath

Note that once we deduce that Anne does not like mathematics we may not use the
second rule because its presupposition is in conflict with our current knowledge, i.e., with
the conclusion that Anne does not like math.3

In real life, one might introduce a preference relation between these two rules. For
example, there is a study program of Logic at the Faculty of Arts in Prague and every
student of logic is also a student of this faculty. Therefore the fact that Anne studies logic
is more informative here than the fact that she studies at the faculty. One might thus
prefer to use the second rule since its assumption is ‘more informative’.

The idea of common reasoning formalization is mostly studied in non-monotonic
logic – logical systems where monotony can fail. A conclusion of a set of premises needs
not be a conclusion anymore if we extend the set of premises.4 In this paper we will use
a formal system called default logic with operational semantics; cf. [1], especially. Our
aim is to introduce the idea of ‘translating’ default rules in action model logic. For these
purposes we will introduce only the plain version of default logic. We will have a set of
premises (hard information) together with a set of default rules that form a default theory.

1.1 Operational semantics

A (general) default theory T is a couple (Γ,D) where the set of formulas Γ represents
‘hard information’, which is accepted as true, and D is a finite set of default rules (or de-
faults, for short). A default (rule) can be understood as an accepted way to extend our
‘hard information’. It enables us to do conclusions that extend possibilities of classical
consequence relation.

A (general) default rule is of the form
φ ∶ ψ1,ψ2, … ,ψn

χ

2 The rule is in the form of a fraction; hard information is written before the colon together with what is
presupposed (behind the colon), a consequent is under the line.

3 If we conclude that Anne does not likemathematics, we cannot consistently assume that she does likemath-
ematics (and vice versa).

4 See, e.g., [1], [2], [3], and [5].
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where φ, ψ1, … ,ψn, and χ are formulas of a background logic.5 The meaning of a general
default can be:

If (a prerequisite) φ is ‘known’ to be true and (justifications) ψ1, … ,ψn
can be consistently presupposed, then (a consequent) χ is derivable.6

There is an idea presented in [1] on how to work with defaults algorithmically. Let us
imagine we form sequences of defaults from the set D without multiple occurrence: Π1,
Π2, Π3, etc. The ordering of defaults in Πj = ⟨dj1 , … , djk⟩, where {dj1 , … , djk} ⊆ D, is
an order of their possible applicability. Before we introduce the term applicability of a
default rule to a deductively closed set of formulas, we define two auxiliary sets, InΠj and
OutΠj, for each sequence Πj. Both sets must be understood as arising step by step, i.e.,
default by default, according to an order in Πj. The definition is by recursion, where Πm

j
denotes the initial segment of Πj = ⟨dj1 , … , djk⟩ of length m, where m ≤ k:

InΠ0
j = Cn(Γ)

InΠm+1
j = Cn (InΠm

j ∪ {χ ∣ φ∶ψ1,ψ2,…,ψn
χ = djm+1

})
InΠj = InΠk

j
OutΠ0

j = ∅
OutΠm+1

j = OutΠm
j ∪ {¬ψ1, … , ¬ψn ∣ φ∶ψ1,ψ2,…,ψn

χ = djm+1
}

OutΠj = OutΠk
j

Step 0 does not apply any default rule, but it prepares all what is (logically) obtainable
from the ‘hard information’ Γ. In step 1, we take the first default in a sequence Πj and test
its applicability (with respect to InΠ0

j ):
7 φ is included in (the so far obtained) InΠ0

j and no
ψ1, … ,ψn is in contradiction with (the so far obtained) InΠ0

j , i.e., ¬ψl ∉ InΠ0
j , for each

l ∈ {1, … , n}. If the default is applicable, sets InΠ1
j and OutΠ1

j are created

InΠ1
j = Cn (InΠ0

j ∪ {χ ∣ φ∶ψ1,ψ2,…,ψn
χ = dj1})

OutΠ1
j = {¬ψ1, … , ¬ψn ∣ φ∶ψ1,ψ2,…,ψn

χ = dj1}

and we can continue with step 2, and so on.

Definition 1. A default φ∶ψ1,ψ2,…,ψn
χ is applicable to a deductively closed set Δ iff φ ∈ Δ

and ¬ψ1 ∉ Δ,…, ¬ψn ∉ Δ.

Our introductory example can be formalized as a default theory where Γ = {φ,ψ} and
D = {φ∶¬χ

¬χ , ψ∶χ
χ }. We can form five sequences of defaults from D:

5 In this paper, we use classical propositional language (modalities will be added later on). Consequence
relation (resp. operation Cn) is based on classical propositional logic. A set of formulas Δ is deductively
closed iff Δ = CnΔ.

6 There are always at least one justification and consequent. It is possible to have no prerequisite. In that case
we interpret the empty ‘prerequisite place’ as true, i.e., tautology.

7 For simplicity, let us assume that dj1 =
φ∶ψ1,ψ2,…,ψn

χ .
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Π1 = ⟨ ⟩ Π2 = ⟨
φ∶¬χ

¬χ ⟩ Π3 = ⟨
ψ∶χ
χ ⟩

Π4 = ⟨
φ∶¬χ

¬χ , ψ∶χ
χ ⟩ Π5 = ⟨

ψ∶χ
χ , φ∶¬χ

¬χ ⟩
Let us look at Π5, for example. The first default is applicable to CnΓ since ψ ∈ CnΓ

and ¬χ ∉ CnΓ. But the second default is not applicable now. Formula χ is derivable from
Cn(CnΓ ∪ {χ}).

Definition 2 (Process). A sequence of default rules Π is a process of a default theory T
iff the default dm is applicable to InΠm, for everym such that dm ∈ Π.8

In the example, Π1, Π2, and Π3 are processes.

Definition 3. Let Π be a process.
• Π is successful iff InΠ ∩ OutΠ = ∅, otherwise it is failed.
• Π is closed iff every d ∈ D applicable to InΠ (i.e., in the order) is already in Π.

Processes Π1, Π2, and Π3, from the example, are successful; however, Π1 is not closed
since there is at least one default in D that is applicable. Generally, it can happen that
there is an applicable default in a process whose consequent causes the fail. For example,
consider a ‘strange’ theory (Γ = ∅,D = { ∶p

¬p}), where p is an atomic formula. It has an
applicable rule with the consequent ¬p, which is in a conflict with the justification p.

Definition 4 (Extension). A set of formulas E is an extension ofT iff there is a successful
and closed process Π such that E = InΠ.

Extension is a central notion of default logic. It is a deductively closed set containing
conclusions of hard information togetherwith consequents of applied defaults. Moreover,
we are sure that there is not any applicable default left. As it is seen in our introductory
example, there can be more than one extension. Π2 and Π3 are successful and closed
processes that form two different extensions. Every extension can be understood as a
way to extend deduction over hard information consistently.

The most important properties of (general) default theories are:9
(1) Let E1,E2 be extensions of T and E1 ⊆ E2, then E1 = E2 (minimality of exten-

sions).
(2) T = (Γ,D) has an inconsistent extension if and only if Γ is inconsistent itself

(consistency preservation).
(3) Let E be an extension of T = (Γ,D), then E is an extension of T′ = (Γ ∪ Δ,D) for

every Δ ⊆ E (cautious monotony in declaratives).
Minimality of extensions (1) says that if there are two different extensions, then theymust
be incompatible. Consistency preservation (2) guarantees that applications of defaults
does not produce inconsistency. As a corollary of this property we obtain: If T has an
inconsistent extension E, then E is its only extension.10 And if T = (Γ,D) has two dif-
ferent extensions, then Γ is consistent. The last property (3) is a form of monotonicity;

8 We will omit the index j in Πj whenever it is not necessary to distinguish various default sequences of one
default theory.

9 Proofs are easy for finite sets of defaults. See [1, pp. 42–44].
10 Such extension is just the set of all formulas.
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we can add hard information, which is based on an extension, and it does not cause any
change in ‘conclusions’ (extensions).

1.2 Normal default theories

There is a special class of defaults called normal default rules. These rules have the
general form of

φ ∶ ψ
ψ

Call a default theory normal if it contains only normal default rules. The introductory
example is formalized as a normal default theory. Normal defaults cannot cover the full
range of non-monotonic reasoning, but they can formalize much from the common rea-
soning. Above that, normal default theories have many desirable properties. One of the
most important is that normal theories have always at least one extension.11

Proposition 1 (Existence of extensions). If T = (Γ,D) is a normal default theory, then
T has an extension.

Proof. Wewill reason that normal theories have always at least one closed and success-
ful process. The case of inconsistent theories and their extensions is clear. Let us consider
consistent ones.

First, every process of a default theory T can be extended to a closed process. This is
true for general default theories. If there is a process Π and a default d ∈ D, which is
applicable, check whether d is in Π. If not, add it. And so on. (For infinite process, see
the proof in [1, pp. 33–34].)

Second, ifΠ is a process of a normal default theoryT , thenΠ is successful. This follows
from the form of normal default rules. The applicability check is processed just on the
formula that is in the role of the consequent [1, p. 50]. �

Normal default theories are monotonic in sets of defaults. If we add a new default,
then we ‘only extend’ the original extensions [1, p. 50].

Proposition 2 (Monotony in defaults). Let T1 = (Γ,D1) and T2 = (Γ,D2) be normal
default theories such that D1 ⊆ D2. Then each extension E1 of T1 is a subset of some
extension E2 of T2, i.e., E1 ⊆ E2.

In our example with Anne studying logic and faculty of arts, we obtained two different
extensions that are incompatible, i.e., they are inconsistent together. This is an inherent
property of normal theories [1, p. 52].

Proposition 3 (Orthogonality of extensions). If a normal default theory T has two
different extensions E1 and E2, then E1 ∪ E2 is inconsistent.

All the mentioned properties of normal default theories can be considered as reason-
able for common ‘private’ reasoning of an agent. Here we accept the idea that extensions
play the role of conclusions, which can be derived from both hard and soft information

11 We have mentioned the (non-normal) theory (∅, { ∶p
¬p}) that has no extensions. It has two processes. The

empty process ⟨ ⟩ is not closed. The process ⟨
∶p
¬p⟩ is closed, but not successful.
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and provide a support for decisions. The first property (existence of extensions) coincides
with the model of an agent that is obliged to do conclusions and decisions. If there are
different conclusions, it means that there are different and incompatible ways of doing
decisions (orthogonality of extensions). If an agent accepts new soft information, it can
extend a decision support without destroying it (monotony in defaults).

2. Actionmodels

The system of actionmodels we will be using, was published in [7] as a way to describe
and formalize epistemic actions. Action model logic is a variant of dynamic logic. Gen-
erally speaking, an action formalizes a transition from one epistemic state to (another)
epistemic state. For the modelling of epistemic states we use standard propositional epis-
temic logic.12

Epistemic logic is amultimodal system extending the classical propositional logic. The
language contains a set of atomic formulas 𝒫𝒫, a finite set of agents 𝒜𝒜, and formulas de-
fined by BNF:

ψ ∶∶= p ∣ ¬ψ ∣ ψ → ψ ∣ Kiψ ∣ ̂Kiψ

where i ∈ 𝒜𝒜 can be interpreted as a name of an agent. We use the well-known S5 seman-
tics. Kripke model is a structureM = (W ,Ri,V) whereW is a non-empty set of possible
worlds, Ri is an accessibility relation of an agent i ∈ 𝒜𝒜, and V is a valuation function.13

The satisfaction relation ⊩ is defined in a standard way:
• (M,w) ⊩ p iff w ∈ V(p)
• (M,w) ⊩ ¬ψ iff (M,w) ⊮ ψ
• (M,w) ⊩ ψ1 → ψ2 iff (M,w) ⊩ ψ1 implies (M,w) ⊩ ψ2
• (M,w) ⊩ Kiψ iff (M, v) ⊩ ψ, for each v such that wRiv

Modality Ki represents knowledge of an agent i and modality ̂Ki is understood as a
dual to Ki:

̂Kiψ ≡ ¬Ki¬ψ

To obtain an action-model version of epistemic logic, we extend the epistemic lan-
guage by actions that represent the transformation of one epistemic model to another
one. The epistemic language will be extended by new modalities [α] and ⟨α⟩ where α is
an action.14 The semantics is enriched by the following clauses:

12 See, e.g., [7] and [6].
13 For simplicity we will use the single-agent setting throughout the paper, except some comments in subsec-

tion 3.1.
14 The form of actions will be discussed immediately. For the moment, the reader can imagine that α is a

(computer) program as in dynamic logic [4].
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• (M,w) ⊩ [α]ψ iff (M,w) α⟶ (M′,w′) implies (M′,w′) ⊩ ψ, for all (M′,w′)
• (M,w) ⊩ ⟨α⟩ψ iff (M,w) α⟶ (M′,w′) and (M′,w′) ⊩ ψ, for some (M′,w′)

Let us note that ⟨α⟩ is dual to [α]. Now we are obliged to explain how to understand
the application of an α-action on an epistemic state (M,w), i.e., what is the meaning of
(M,w) α⟶ (M′,w′) in action model logic.

An action α causes a change of an epistemic state (M,w) to a state (M′,w′). This
change is conducted by structures (called action models) that are very similar to Kripke
structures that we use as models for epistemic logic. An action α can be atomic or com-
posite.15 Atomic actions and composite actions as well are based on action models. An
action model is a structure

M = (S,Ri, pre)
where

• S is a non-empty set of nodes
• Ri is a binary relation on S, i.e., Ri ⊆ S × S for each i ∈ 𝒜𝒜
• pre is a function assigning exactly one formula to each node (pre ∶ S ⟼ Fla).

Action models have non-empty domains of action-states (nodes) and an accessibil-
ity relation for each agent. These relations have the same constrictions and properties
as their epistemic counterparts, i.e., since our underlying logic is S5, the relations are re-
flexive, transitive, and symmetric. The informal interpretation is the same as in plain S5
system, sRitmeans that an agent i cannot distinguish action-states s and t. Unlike Kripke
models however, action models do not contain a binary relation between nodes and for-
mulas (valuation). They instead have a unary function, called precondition, that assigns a
formula to every node of an action model. This precondition formula has to be satisfied
in order for the respective action to happen.

Given an epistemicmodel, onemay apply an actionmodel to it. This ‘action execution’
is governed by a function of restricted modal product ⊗ that takes an epistemic model
and an action model and creates a new epistemic model.

Definition 5 (Restricted modal product). Let M = (W ,Ri,V) be an S5 epistemic
model and M = (S,Ri, pre) an S5 action model. A restricted modal product (M ⊗ M)
is an epistemic modelM′ = (W′,R′

i ,V ′) where
• W′ = {(w, s) ∣ w ∈ W & s ∈ S & (M,w) ⊩ pre(s)}
• (w, s)R′

i (w′, s′) iff (wRiw′ & sRis
′),

for w,w′ ∈ W and s, s′ ∈ S
• (w, s) ∈ V ′(p) iff w ∈ V(p),

for (w, s) ∈ W′ and atomic formula p ∈ 𝒫𝒫

Thus, in action model logic, the change from an epistemic state (M,w) to a ‘new’ epis-
temic state (M′,w′) can be conducted by an atomic action α = (M, s):

(M,w)
(M,s)
⟶ (M′,w′)

if and only if
w ⊩ pre(s) and (M′,w′) = ((M ⊗ M), (w, s))

15 E.g., for any actions α1 and α2, concatenation of two actions α = (α1; α2), finite repetition of an action
α = (α1)∗, non-deterministic choice of two actions α = (α1 ⊔ α2), and others.
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The language of action model logic includes epistemic language and atomic actions
that are always of the form (M, s). Composite actions are usually reducible to atomic
ones. More about the properties of this system can be found in [7, chapter 6].

3. Normal default actions

In action model logic we work with the idea that there is a group of agents and these
agents change their epistemic states with respect to ‘new’ information produced by verbal
as well as non-verbal actions. There is a slightly modified picture in the introductory
example. Weplayed the role of an agent reasoning about ‘Anne’s liking formath’. We called
this reasoning ‘private’ because itmostly happens inside our headwithout any connection
with other agents. Nonetheless, it need not be completely private, other agents can know
both hard and soft information and can follow our steps in reasoning. Even if we do
not show publicly the direction of our thoughts, the other agents have to consider all
possibilities in their epistemic states.

To incorporate default reasoning inside action model logic we have to understand de-
fault rules as actions.16 Someone (let us call the agent i) can use the default rule

AnneStudentOfArtFaculty ∶ ¬AnneLikeMath
¬AnneLikeMath

in a situation whenever i is not sure whether Anne likes math or not, but there is no
information, which is in conflict with the justification that Anne does not like math. Si-
multaneously, the prerequisite Anne is a student of a faculty of arts is considered by i as
a ‘knowledge’. If the rule is applied, then i narrows down the set of possible worlds that
are indistinguishable for i. Now, the agent accepts Anne does not like math as a (new)
‘knowledge’. In fact, if a normal default rule is applied by i, then i changes her epistemic
situation that forms a base for a possible application of other defaults. More formally, a
normal default rule φ∶ψ

ψ changes agent’s epistemic model such that it separates ψ-worlds
from ¬ψ-worlds and the agent is ready to work with preferred ψ-worlds from now on. If
the agent i goes on with some other default, she only checks the validity of a (new) pre-
requisite with respect to the possible worlds where ψ is true. Of course, it does not mean
that ¬ψ-worlds are canceled. They are now distinguishable for i and can be important
from the viewpoint of other agents’ knowledge.

This idea brings us to a small modification of epistemic models. Every agent will have
a set of designated (preferred) possible worlds that are the basis of defaults’ applicability.

Definition 6. A (default) epistemic modelM is a structure (W ,Ri,V ,Xi) whereW is a
non-empty set of possible worlds, Ri is an accessibility relation of an agent i,V is a valuation
function, and Xi ⊆ W is a non-empty set of designated possible worlds for an agent i such
that whenever uRiv, it holds that u ∈ Xi iff v ∈ Xi.

16 Defaults cause changes, which exceed the deductive base of a background formal system that is described
by epistemic logic.
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Thedesignated setXi ≠ ∅ marks the states that are ‘important’ to agent i. In the agent’s
reasoning, i.e., in application of a default rule, the agent ‘ignores’ all the states outside of
Xi. The designated worlds are not connected via Ri to those that are not designated.

This leads us to a formal solution of the question when a normal default rule φ∶ψ
ψ

is epistemically applicable by an agent. An agent has to ‘know’ the prerequisite φ and
consider the justification ψ as unknown, but possible, with respect to the set of the agent’s
designated worlds.

Definition 7. A normal default rule φ∶ψ
ψ is epistemically applicable by an agent i in an

epistemic modelM iff for each w ∈ Xi:
• (M,w) ⊩ Kiφ
• (M,w) ⊩ ̂Kiψ
• (M,w) ⊩ ̂Ki¬ψ

In other words, formulasKiφ, ̂Kiψ, and ̂Ki¬ψ are valid in the submodel ofM generated
by a set Xi.17

Our term of (epistemic) applicability does not fully correspond to the applicability in
default logic. A default rule φ∶ψ

ψ , where the justification ψ is known by an agent, could
be applicable in default logic but from the epistemic point of view it does not do any
change of agent’s epistemic state. Such default rules would be in some sense hollow—
empty thinking about things that are already known. However, wewant defaults to decide
unknown things.18

Actions based on normal default rules are of another nature than atomic actions in
action models logic. They do not depend on one (action) node and its precondition. The
applicability of a default takes over the role of precondition.

An action corresponding to a normal default φ∶ψ
ψ (used by an agent i) will be under-

stood as a two-node action model

Di = (S,Ri, pre,Xi)
where

• S = {s, t}
• (s, t) ∉ Ri, but (s, s) ∈ Ri and (t, t) ∈ Ri
• pre(s) = ψ and pre(t) = ¬ψ
• Xi = {s}

The actionDi has two action-states, which are not connected by the relationRi (the agent
i can distinguish these two states), and they differ in preconditionswith respect to formula
ψ. The new aspect is the set Xi, which corresponds to the set of designated worlds in an
epistemicmodel. Xi contains action states that have the formula ψ as their preconditions.
In the simple case of normal defaults, the designated setXi contains only one action-state
s whose precondition is ψ.19

The idea will be complete after we describe how the actionDi works. We have empha-
sized that a normal default action is different from atomic actions in action model logic.

17 Compare the notion of ‘R-applicability’ in [5].
18 Similarly, multiple occurrence of a default is not allowed in default logic.
19 A two-agent version will be mentioned in subsection 3.1.
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It is not an update that changes one particular epistemic state (M,w) into a (new) epis-
temic state (M′,w′). Normal default actions operate on whole models and, thus, change
epistemic background.

For an epistemic model M = (W ,Ri,V ,Xi) we define

M
Di

⟶ M′

if and only if
(1) the corresponding default rule is applicable (Definition 7) and
(2) M′ = (M ⊗ Di).

The resulting epistemic model M′ will be formed as it is described in Definition 5. The
only thing we have to add is how to form the new set of designated worlds X′

i . For each
w ∈ W and x ∈ S:

(w, x) ∈ X′
i iff w ∈ Xi & x ∈ Xi

The action based on action modelDi causes the resulting epistemic modelM′ to con-
tain two parts (submodels) that are disjoint for the accessibility relation Ri. Let us now
consider normal defaults φ∶ψ

ψ and φ∶¬ψ
¬ψ , for example. We will write (φ ∶ ψ/ψ)i and

(φ ∶ ¬ψ/¬ψ)i as actions based on these defaults for an agent i. Both of them are appli-
cable (by the agent i) under the same conditions, cf. Definition 7.20 The corresponding
action models are almost the same. The difference lies in sets of designated worlds. The
first default action model requires to have designated nodes with the precondition ψ and
the other one with ¬ψ.

If the action (φ ∶ ψ/ψ)i is applied on an epistemic model M = (W ,Ri,V ,Xi) (by an
agent i), then two separated parts are formed in the new epistemic model
M′ = (W′,R′

i ,V ′,X′
i ). No world from one part is connected by R′

i to any world from the
other part. One of the parts consists of ψ-worlds and these worlds are designated (X′

i ),
the other one consists of ¬ψ-worlds. Informally, the agent i did a decision whether ψ or
not and preferred ψ as true. If the agent i is in any new epistemic state w′ ∈ X′

i , then the
formula Kiψ is true there. Similarly for the formula Ki¬ψ in states out of X′

i .
In case we know that an agent i is in a particular epistemic state (M,w), then the

application of either (φ ∶ ψ/ψ)i or (φ ∶ ¬ψ/¬ψ)i depends on whether (M,w) ⊩ ψ or
(M,w) ⊩ ¬ψ. A particular epistemic state provides preferences among default actions
based on preconditions.

From the viewpoint of an agent i and her epistemic model M = (W ,Ri,V ,Xi), a de-
fault theory (Γ,D) means that (M,w) ⊩ Kiγ, for each w ∈ Xi and each γ ∈ Γ. At the
very beginning, before the use of any default, all states are designated (Xi = W). The
final epistemic model is the result of ‘step by step’ applications of default actions given by
a successful and closed process. If Π = ⟨d1, … , dk⟩ is a successful and closed process, we
obtain the final epistemic model (for an agent i) by the concatenation of corresponding
actions (Di

1;Di
2; … ;Di

k):

20 With respect to Definition 7 we can make a terminological convention. The meaning of ‘a default rule φ∶ψ
ψ

epistemically applicable by an agent i in an epistemic model’ is the same as ‘a default action (φ ∶ ψ/ψ)i
applicable (by i) in an epistemic model’.
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M
Di

1⟶ ⋯
Di
k⟶ M′

The knowledge of the agent i in a submodel (of M′) generated by X′
i corresponds to

the extension InΠ.21
Let us consider a normal default theory (∅, { ∶p

p , ∶¬p
¬p , p∶q

q }) of an agent i. There is no
hard information and p, q are atomic formulas. We can form two successful and closed
processes: ⟨

∶p
p , p∶q

q ⟩ and ⟨
∶¬p
¬p ⟩. Thus, we have two possible updates of an epistemic

model M = (W ,Ri,V ,Xi). The first one is given by concatenation of two normal default
actions ((∶ p/p)i; (p ∶ q/q)i) and the second one by the single action (∶ ¬p/¬p)i. Now
all depends on the applicability and agent’s decision which one will be done.

If there is a concatenation of normal default actions, then the erasing of an accessibility
relation is executed all over the model. For example, whenever i executes ((∶ p/p)i;
(p ∶ q/q)i), then, after the second action (p ∶ q/q)i, the relation Ri does not connect q-
and ¬q-words in both parts formed by the first action (∶ p/p)i. The final set of designated
worlds will contain (p ∧ q)-worlds.

3.1 Examples

In formalisms and examples throughout the text we used, in fact, a single-agent vari-
ant. Our aim was to introduce the basic idea how to use normal defaults as actions.
Nonetheless, it will be useful to present some notes concerning a multi-agent variant.

The language of epistemic logic, which we have introduced, is multi-agent friendly.
Knowledge operators as well as accessibility relations are indexed by agents’ names. Since
default rules correspond to ‘private’ reasoning acts, we use the same indexing by the name
of an agent for normal default actions. Nonetheless, we did not introduce group knowl-
edge operators and that is the reason why we are not going to discuss all aspects of the
multi-agent setting. We do not solve what is the essence of a default theory, whether
‘hard information’ is commonly known among agents, whether default rules are shared
in a group, and similar questions. For the following examples, let us imagine that agents
do their default reasoning individually. Agents do not communicate; however, they may
(privately) follow the reasoning of other agents.

We will show two examples that will present what must be considered even in this
simplified epistemic setting. The group of agents will contain just two agents, let us
call them Alice (a) and Bob (b). Now, a (default) epistemic model is a structure M =
(W ,Ra,Rb,V ,Xa,Xb) and a normal default action used by the agent a, for example, is a
structure Da = (S,Ra,Rb, pre,Xa,Xb) where the behavior of this structure depends on
the type of reasoning, see Example 2 for an additional commentary. If the reasoning of
a does not depend on the activity of b, then a normal default action corresponding to
a normal default φ∶ψ

ψ used by the agent a is the structure Da = (S,Ra,Rb, pre,Xa,Xb)
where

• S = {s, t}
• (s, t) ∉ Ra, but (s, s) ∈ Ra and (t, t) ∈ Ra

21 Formal details will not be discussed in this introductory paper.
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• (x, y) ∈ Rb, for each x ∈ S and y ∈ S
• pre(s) = ψ and pre(t) = ¬ψ
• Xa = {s}
• Xb = S

It means that b’s accessibility relation and set of designated worlds will not be changed.
Example 1 In the first example we present the situation where Bob has a default theory
(∅, { ∶Kap

Kap
}), i.e., Bob has no hard information, but a default rule on Alice’s knowledge

of (an atomic fact) p. Consider the following epistemic model:

p, q

p, ¬q

¬p, q

¬p, ¬q

a b

a, b

a b

a, b

a, b

Neither Bob nor Alice know anything about p or q. All four epistemic worlds are
indistinguishable for them and their sets of designated worlds are the same (indicated
by the dashed line). The default action (∶ Kap/Kap)b is not applicable by Bob in this
scenario. He does not admit the epistemic possibility that Alice knows p, see the second
condition in Definition 7.

If Alice can distinguish p-worlds and ¬p-worlds, as in the following figure, then the
action is applicable by Bob.

p, q

p, ¬q

¬p, q

¬p, ¬q

a b

b

a b

b

a, b

After we apply the default rule we obtain a new epistemic model:
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p, q

p, ¬q

¬p, q

¬p, ¬q

a b a b

a
b

Bob’s set of designated worlds has changed and from now on he works with the fact
that Alice knows p.

Example 2 The second example presents private and semi-private reasoning and their
differences. Recall our example with Anne, a student of logic at Faculty of Arts. Let’s
consider our two agents, Alice and Bob, who discuss whether Anne likes mathematics or
not. They both know the hard information that Anne studies logic at Faculty of Arts. If
we label the fact that Anne likes mathematics as p, the situation might look like this:

p ¬pa, b
a, b

Alice and Bob consider both p and ¬p possible and include both situations in their
respective designated sets. After a short discussion Alice decides that she prefers to use
the default reasoning that Anne indeed does likemathematics. Bob has access to the same
default rules as Alice but has not decided yet.

p ¬pb

b
a

In this model Alice’s designated set contains only the state where p holds. Bob’s des-
ignated set and accessibility relations were unchanged. However Alice’s deduction was
in some sense public, or semi-private. Bob knows that Alice knows something new, i.e.,
the formula Kb(Kap ∨ Ka¬p) holds in the whole model, resp. in the submodel generated
by b’s set of designated worlds. We may obtain this model simply by applying the default
action (∶ p/p)a.

Alternatively we may consider that Alice’s reasoning is private. In this case Bob’s
knowledge will in some sense decrease.
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p

p

¬p

¬p

b

b

b

a, b

b

a

Now, Bob has no clue about Alice’s knowledge. He doesn’t even know whether Alice
‘used’ a default reasoning or not.

This situation (private reasoning) may be achieved by a slight change in the definition
of the default action model. Along the two action states {s, t} there is a new state uwhose
precondition is (p ∨ ¬p). Bob’s accessibility relation will be universal, i.e., any two states
are in the relation Rb.22 The action model structure for a’s private use of (∶ p/p)a is the
following Da = (S,Ra,Rb, pre,Xa,Xb) where

• S = {s, t, u}
• for all x ∈ S, just (x, x) ∈ Ra
• (x, y) ∈ Rb, for all x ∈ S and y ∈ S
• pre(s) = p and pre(t) = ¬p and pre(u) = (p ∨ ¬p)
• Xa = {s}
• Xb = S

4. Conclusion and further research

This paper focuses on showing that normal default reasoning and action models can
share a common ground. We investigated the relationship between normal defaults and
actionmodels and proposed a way to ‘translate’ normal default rules into (default) actions
in the framework of action models logic. The presented system shows the role of normal
defaults in a simple semi-private reasoning or, alternatively, in a completely private way
of thought of an agent.

A lot of further research remains in this field. One may obviously investigate gen-
eral default rules or semi-normal defaults. An interesting generalization stems from the
behavior of group epistemic modalities like common knowledge and distributive knowl-
edge that are important for communication among agents. This was mentioned in the
previous section.

Another thing to consider is that some rules might be more informative or more ‘cor-
rect’ than other rules. We would want the agents to apply these better defaults before they
apply any others. This can be achieved by a preference function. Each agent would have a
preference function that would order each of her defaults by preference. This preference

22 Compare the action model and the resulting epistemic model in [7, p. 153, Example 6.13].
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function might even be interactive. For example if agent a sees that agent b used default
d1, she might be more inclined to use the same default d1 instead of d2. These ideas bring
us to a question whether there is a correspondence to belief revision and to a (technical)
problem of the combination of default actions with other actions in this framework.
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ABSTRACT
In this paper, we review and critically evaluate George D. Birkhoff ’s work concern-
ing formalisation of aesthetics, as it appeared in his book Aaesthetic Measure from
1933, and discuss its influence on further research in the field. In the book, Birkhoff
defines an aesthetic measure M of an art object as the ratio between its order and
complexity, or more generally a function f of this ratio: M = f (O

C ), where O stands
for order and C for complexity. The specific definitions of O and C depend on the
type of the analysed object. Birkhoff applied the formula to multiple classes of ob-
jects (e.g. vases, music, or English poetry) and calculated the aesthetic measure for
many art objects from these classes.
We give an example of Birkhoff ’s analysis using polygons, and we further discuss to
what extent the ordering of the polygons (or other objects) according to the result-
ing measures can be used, or interpreted, as an ordering according to a degree of
aesthetic preference.
We also include an extensive bibliography, supplemented by a critical discussion of
the influence of Birkhoff ’s work on further research.
Keywords: aesthetic measure, information complexity, theory of information, ratio-
nal aesthetics, information aesthetics

1. Introduction

In his book Aesthetic measure [Bir33], Birkhoff defines an aesthetic measure and ap-
plies it to several types of objects with different modes of perception – visual, including
3D objects, and auditory (music, poetry). The measure is defined in relation to the effort
which the object demands of the perceiver (complexity), and the pleasing or displeasing
features which can be recognised in the object (order).

George David Birkhoff (1884–1944) was a distinguished mathematician, who worked
predominantly in the fields of algebra, dynamic systems and number theory. He is best
known for his proof of the general form of the Poincare-Birkhoff theorem (1913), for his
book Dynamic Systems (1927), or for his proof of characterisation of monoids (1935).

Aesthetic Measurewas published in 1933, but some of the results were presented earlier
on conferences and in papers (starting from 1928). In the introduction to [Bir33], Birkhoff
states that he started to be interested in the structural aspects of aesthetic perceptionwhile
listening tomusic (mostly classical), almost 30 years previously. He realised that the order,
or pattern, of the tones plays an important role in aesthetic perception of music. He later
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refined these ideas into a theory and applied it to other forms of aesthetic objects (vases,
tiles or polygons – visual art, or poetry – auditory art).

Some sources state that Birkhoff based his theory on thework of aCanadian-American
artist Jay Hambidge, as he formulated it in his bookDynamic Symmetry (1926, Harvard).
This information is given for instance in H. J. McWhinnie’s A Review of Research on Aes-
thetic Measure [McW68]. Birkhoff himself does not name Hambidge as an inspiration;
however, he mentions his name twice in the fourth chapter of the book: Chapter IV:
Vases. On page 67, he quotes Hambidge’s work Dynamic Symmetry of the Greek Vases,
New Haven and New York, 1920, in connection to Greek vases, and then at the end of
chapter The Appreciable Elements of Order, where he discusses properties of vases which
have impact on the order of the aesthetic measure (and at this place, he disagrees with
Hambidge [Bir33, p. 72]).

In our paper, we introduce Birkhoff ’s aesthetic measure using polygons. The reason
is that the majority of contemporary papers focuses on vases, according to Birkhoff ’s
Chapter 4, [Bir33, pp. 67–86]. A modern presentation of the aesthetic measure regarding
polygons has been mostly missing from the literature.

2. The aesthetic measure

According to Birkhoff, the first impulse for his study of the aesthetic quality of ob-
jects in the context of a semi-mathematical theory was the act of listening to music with
reflections on the melody pattern. These reflections were the beginning of work which
was

“… to bring the basic formal side of art within the purview of the sim-
ple mathematical formula defining aesthetic measure” [Bir33, p. viii]

According to Birkhoff, aesthetic experience consists of three primary consecutive
stages:

“… (1) a preliminary effort of attention, which is necessary for the act
of perception, and which increases in proportion to what we shall call
the complexity (C) of the object; (2) the feeling of value or aesthetic mea-
sure (M) which rewards this effort; and finally (3) a realisation that the
object is characterised by a certain harmony, symmetry, or order (O),
more or less concealed, which seems necessary to aesthetic effect.” [Bir33,
pp. 3–4]

Thus the aesthetic quality is in relation to the attention which is required to perceive
the object in its entirety, and is counterbalanced by the notion of order in the object.
The load of attention grows in proportion to the complexity of the object, and therefore
Birkhoff denotes this property by complexity, C, of the object. Order, O, of the object is a
counterbalancing quantity, often found in the forms of harmony or symmetry. Birkhoff
postulates that the aesthetic measure M is the ratio of these two quantities: to preserve a
fixed value of the measure, higher complexity of an object must be counterbalanced by
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an increased order, and conversely, simpler objects require a smaller value of order for
the same effect. More generally, Birkhoff defines the aesthetic measure as a function f of
this ratio:

M = f (O
C

) .

Birkhoff did not elaborate on the specific form of f , and in his work he essentially
identifies f with the identical function.1 As we discuss later, the range of M consists of
rational numbers, with the usual ordering on rational numbers being implicitly used to
order the values of M.2

Birkhoff applies his formula in a general setting, irrespective of themode of perception
(visual, auditory) or of the type of object. In his understanding, the formula is universal
and transferable between art forms. In his book, he gives examples of objects perceived vi-
sually (always plane objects, or objects mapped to a plane), musical objects andmelodies,
and poetry (which he finds similar tomusic in his study). In every area, he delimits a class
of objects, usually a very narrow class, and formulates for them concrete definitions of or-
der and complexity in order to calculateM. The exact definitions of order and complexity
must be chosen carefully to ensure that the resulting M reflects the aesthetic quality of
the object; this choice is considered by Birkhoff as the basic problem in aesthetics [sic!].

The first part of aesthetic experience is the initial exertion which is required to per-
ceive an object. As we stated earlier, this exertion is in proportion to the complexity C
of the object. Birkhoff maintains that the act of perception leading to an aesthetic feeling
necessarily requires a conscious exertion of attention. The amount of this attention corre-
sponds toC. More exactly, the value ofC is the sum of all types of exertions multiplied by
the number of their occurrences. This leads Birkhoff to defining complexity as the num-
ber of units in the object which require a conscious act of attention (e.g. number of tones
in a melody or number of edges of a tile). Complexity has an impact on the resulting
measure M, which is viewed as a reward for the exertion of attention. This relationship
between C and M is counterbalanced by the quantity of order in the object, which can
compensate for a higher complexity.

The orderO in the object is considered to be a conscious part of the aesthetic process.
O is characterised by the pleasant feelings associated with the exertion of attention (cor-
responding to C). In order to determine the value of order in the object, it is necessary
to distinguish two types of associations: formal and connotative.

Formal associations are defined as those associations which are implied by basic prop-
erties of objects, such as symmetry, repetition, similarity, contrast, identity, balance,
repetitive parts, i.e. properties which invoke pleasant feeling in the act of attention, but
also by properties which invoke negative feelings (lack of reward in attention), such as
lack of clarity, unpleasant repetition, inessential imperfection, or dissonance in music.
The value of O is thus the sum of all formal associations multiplied by the number of oc-
currences; formal associations occur in this sum either with the positive sign (pleasant

1 Therefore, in this paper, we use a simplified formula M = O
C .

2 Birkhoff does not specifically discuss this issue, but only mentions some related questions. See the end of
Section 2.2 below.
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associations) or with the negative sign (unpleasant associations). Indifferent associations
have the zero value. Birkhoff specifies concrete associations, and their effect on O, for
various types of objects.

Connotative associations do not take part in determining the aesthetic measure. They
are defined as such associations that are not formal, i.e. which are not implied by a basic
property of the object. Among connotative associations, we can include the usefulness of
polygons mentioned by Birkhoff on page 29, where he states that

“… usefulness corresponds to a connotative factor entirely outside of the
scope of the theory.” [Bir33, p. 29]

Birkhoff does state that every association becomes an element of the order, disregarding
whether it is a formal or a connotative association, but in his definition of the orderO for
the purposes of M he only allows formal associations.

The notions of order and complexity need to be applied in concreteness to a narrow
class of objects to yield a reasonable notion of comparison between these objects. Birkhoff
chooses in the book classes of objects such as polygons, ornaments, tiles, or vases. For
vases, Birkhoff defines the notions of order and complexity for planar cuts intersecting
the axis of a vase, i.e. for planar curves which by rotation draw the contour of the vase
(handles and spouts are not considered). In music, based on specific definitions of C and
O, Birkhoff calculates M for diatonic scales and chords, harmonies and melodies. From
music, Birkhoff finally turns to poetry.

In the next section, we give for illustration of Birkhoff ’s methods more details for one
specific class of objects – polygons.

2.1 Polygons

Birkhoff describes the aesthetic measure of polygons in Chapter II, [Bir33, pp. 16–48].
Polygons are the first class of objects for which he gives details regarding the calculation
of M. At the beginning of the chapter, he states that while polygons are often considered
merely as geometrical objects, they do have an aesthetic quality which can be used to
compare polygons among themselves. As we said earlier, classes of objects for which we
calculate M should be defined as narrowly as possible; for this reason Birkhoff limits his
attention to plane shapes which can be used as tiles. Moreover, he requires that all poly-
gons should have a similar size, and he disregards colours andmaterials. These limitations
should remove as many connotative associations as possible. Birkhoff also eliminates the
role of an observer in order to disregard the role of cultural background or education.
This method allows him to evaluate plane shapes more objectively (but he also disregards
symmetries which may be recognisable only to an educated or experienced observer).

The formula for calculation of M for polygons is defined as follows:

M = O
C

= V + E + R +HV − F
C

,

whereC is the complexity of the polygon,O is the order defined by the vertical symmetry
V , balance E called equilibrium by Birkhoff, rotational symmetry R, horizontal-vertical
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network or grid HV and non-pleasing or unsatisfactory form F. Parallel edges and the
horizontal symmetry are classified as neutral, i.e. they are not included in the computation
ofM. The properties participating in the order are concernedmostly withmovements on
the plane and less with properties which we can call numerical. The numerical properties
are not completely ignored, though. Sometimes they are captured by other properties: for
instance for an equilateral triangle, Birkhoff does not consider the equality of the sides,
but they do have a role in the calculation of possible rotations and symmetries.

The complexity C is defined as the number of lines on which there lie all edges of the
polygon. Note that this is not the same as the number of edges of the polygon (consider
for instance a six-pointed star or the Greek cross).

The vertical symmetry V is considered as a positive property, and therefore is calcu-
lated with the positive sign. An object has the vertical symmetry 1 if it is symmetrical
along the vertical axis. Otherwise the symmetry has value 0.

An overall balance of the object is denoted E and relates to the visual sense of balance,
not necessarily physical balance, and takes values −1, 0, 1. The visual balance is evaluated
according to the position of the equilibrium. The highest value E = 1 is assigned when
the equilibrium of the object lies between the vertical lines crossing the extremal points
of the polygon, and the distance to these lines is at least 1/6 of the horizontal width of the
object. In particular, if V = 1, then E = 1. If the equilibrium lies between the lines, but
in a smaller distance, the value of E is set to be 0. Otherwise the value is −1.

Figure 1: Aesthetic measure from left to right: M = 0.75, M = 0.5 and M = 0.4.3

The quantity R captures the rotational symmetries of the polygon. If there exists a
rotational symmetry, then q denotes the number of possible rotations before the poly-
gon returns to its original position, i.e. 360°

q is the least possible angle of rotation. R is
calculated from q as follows:

R =
⎧
{
⎨
{
⎩

q
2 if (1) there is a rotational symmetry, (2) q ≤ 6, and (*)
3 if (1) there is a rotational symmetry, (2) q > 6, and (*),
1 for other cases if a rotational symmetry exists and q is even,
0 otherwise.

3 This and following figures were created based on the illustrations in [Bir33].
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where (*) means that the polygon itself has a vertical symmetry or the convex hull of the
given polygon has a vertical symmetry and the concave parts of the given polygon do not
adjoin to the vertices of the convex hull.

HV (Horizontal-Vertical grid) is related to the movements of polygons on the plane.
HV is considered as positive if the polygon can be moved vertically and/or horizontally
to a new position while preserving its relative position in the same horizontal-vertical
grid. The value can be 2, 1, 0. Birkhoff defines that HV takes the value 2 if all edges of
the polygon lie in parallel to the vertical-horizontal grid (grid consisting of horizontal
and vertical lines). Typical examples are rectangles, Greek cross or a polygon in the form
of the letter H. If instead of the vertical-horizontal grid, we consider a grid composed
of parallel lines with the same angle with respect to the vertical lines and all edges of the
polygon lie on this grid, we setHV = 1 (a typical example is a diamond, i.e. an equilateral
parallelogrampositioned on its vertex). In addition,HV equals 1 if the polygon is situated
in a vertical-horizontal grid or in a grid consisting of parallels with the vertical line, but
one direction of the edges is diagonal to the gird (or two directions are diagonal to the
grid), or finally if some of the edges are not exactly parallel with the lines in the grid.
Otherwise, we set HV = 0.

Figure 2: The diamond with the aesthetic measure M = 1.

The last quantity participating in O is the non-pleasing (unsatisfactory) form F.
Birkhoff refers to it as the omnium gatherum of all negative elements of the order. F
takes the negative sign, and values 2, 1, 0. To achieve F = 0, the polygon must satisfy the
following conditions:
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(1) There are no distances between vertices, edges and between a vertex and an edge
which are too small. A distance is too small if it is less than 1/10 of the maximal
distance between the vertices of the polygon.

(2) The angles between the edges are not too small (set as less than 20°).
(3) There are no irregularities. This is defined that no movement of a vertex by a

small amount (less than 1/10 of the distance to the nearest vertex) may impact
the values of V ,R or HV .

(4) There are no projecting edges.
(5) There is at most one type of a concave angle.
(6) If we view the vertical and horizontal directions as one direction, then the poly-

gon cannot have more than two types of direction.
(7) There is a symmetry which prevents both V and R from taking the value 0.
The reader may notice vague quantifications “too small” or “small amount” occurring

in three conditions above. It seems that the exact value of “too small” is not very important
for themethod – Birkhoff uses the phrase “… for definiteness we shall demand…”, [Bir33,
p. 41].

If the polygon violates one condition, we set F = 1. If more than one condition fails,
we set F = 2.

Figure 3: A regular six-pointed star positioned on a vertex, with the grid. M = 1.

We illustrate the computation of M with the example of a six-pointed star positioned
on a vertex. ComplexityC equals to the number of lines on which the edges lie, i.e.C = 6.
The star is symmetric along the vertical line, therefore V = 1 and also E = 1. The star can
be rotated by 60°, i.e. q = 6 and R = 3. The star satisfies the condition that the polygon is
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situated in a vertical-horizontal grid or in a grid consisting of parallels with the vertical
line, but two directions of the edges are diagonal to the grid, thereforeHV = 1. The form
is satisfactory, with F = 0. The aesthetic measure of a six-pointed star positioned on a
vertex is therefore:

M = 1 + 1 + 3 + 1 − 0
6

= 1.

2.2 Comparing objects according to their measure

Wewill use the specific example of polygons to determinewhich polygonhas the great-
est value of the aestheticmeasure on the rational line. Birkhoff discusses related questions
in the chapter 30. The Mathematical Treatment of Aesthetic Questions on pages 46–47. A
similar discussion, with minor inaccuracies, can be found in [Bar03].

The complexity C can have many values for polygons, but it is always at least 3. C = 3
if the edges of the polygon lie on three lines, i.e. if the polygon is a triangle. Accord-
ing to [Bir33], the aesthetic measure of a triangle is an element of the following set:
{7/6, 2/3, 0, −1/3, −2/3, −1}, i.e.

M(triangle) ≤
7
6

,

where the greatest value is assigned to the equilateral triangle, with M = 7/6.
In general, we have the following values for polygons: V ≤ 1, E ≤ 1, R ≤ 3, HV ≤ 2,

and F ∈ {0, 1, 2}, and therefore O ≤ 7 and

M(polygon) ≤
7
C

.

For the square, we have C = 4, V = 1, and so E = 1, R = 4/2 = 2, HV = 2, and F = 0,
hence

M(square) = 1.5

We know thatM(triangle) ≤ 7/6, andM(square) = 1.5, and therefore no triangle (i.e.
a polygon with C = 3) can have its measure greater than the square. If C ≥ 5, we get
M ≤ 7/5 = 1.4. The polygon with the greatest measure must therefore be found among
four-edged polygons whose edges lie on 4 lines, with two and two lines being parallel to
each other. This holds only for the square (M = 1.5), a general rectangle (M = 1.25), and
diamond (M = 1). In all other cases, HV = 0 and either V or R are equal to 0, hence
O ≤ 2, and M ≤ 0.5. It follows:

M(polygon) ≤ 1.5,

where M = 1.5 only if the polygon is a square in the upright position.
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Figure 4: Aesthetic measure from left to right: M = 1.5, M = 1.25, M = 7/6, M = 1, M = 1, M = 1.

We have calculated that the square in the upright position is the polygon with the
greatest value of the aesthetic measure. A natural question is whether Birkhoff interprets
this result as saying that the square is the most beautiful polygon.

Since the measure is a function from objects to the rational numbers, the values of
the measure are ordered as rational numbers. Birkhoff does not explicitly say that the
underlying order on the rational numbers should be interpreted as the ordering of the
values of themeasure. However, in some parts of the book he does refer to the ordering of
the rational numbers and relates it to the ordering of the measure (we choose a quotation
concerning polygons):

“… the square in horizontal position has the highest rating of all polygo-
nal forms …” [Bir33, p. 25]

However, he also cautions the reader that

“It follows then as a ’theorem’ that the square with horizontal sides with
M = 1.50 is the best of all possible polygonal forms. Obviously such
mathematical treatment upon the basis of the theory becomes a mere
game if carried too far.” [Bir33, p. 47]

3. The impact of Birkhoff’s work

In the time of publication of Birkhoff ’s book, mathematical community had already
been familiar with Birkhoff ’s search for a simple mathematical formula for the aesthetic
measure, see for instance [Bir29], [Bir31]. Birkhoff was also invited to give lectures on
this topic, for instance on the International Congress ofMathematicians in Bologna, 1928.
Additionally, he was invited to introduce his theory in a four-volume compendium The
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World ofMathematics, edited by J. Newman (1933, with further editions in 1956 and 2003).
The text was publishedwith editor’s preface in section XXI,AMathematicalTheory of Art,
with the titleMathematics of Aesthetics [Bir56]. Today, we can find almost 850 citations of
Birkhoff ’s Aesthetic Measure, not least because of the interdisciplinary character of var-
ious researchers interested in his work. In this paper, we only give references to main
sources which refer to Birkhoff ’s work.

Initially (1930s and 1940s), we mostly find reactions by psychologists. In their papers
they published results of empirical studies and compared themwithBirkhoff ’s theory. Af-
ter an application of themeasure, they usually look for a correlation between the empirical
results and theoretical predictions; the empirical results were primarily obtained using
volunteers who were asked to give their aesthetical preference for the presented objects.
Objects used in the studies were of various forms, including polygons. The results were
usually negative in the sense that the theory of the aestheticmeasurewas not corroborated
empirically. For more information, see for instance [Dav36], [Eys41], [Wil39], [BCP37]
or [Gra55].

A survey of results in psychology aimed at either verifying or refuting Birkhoff ’s the-
ory can be found in A Review of Research on Aesthetic Measure by Harold J. McWhinnie
from 1968 [McW68]. McWhinnie states that psychological studies were not interested
in the aesthetic judgement concerning an object, but rather in the aesthetic preference of
the observer. This seems to be at odds with Birkhoff ’s prerogative to use only properties
of the object itself (formal associations), and disregard subjective preference (connota-
tive associations). Studies based on aesthetic preference run counter to Birkhoff ’s ideas,
and it seems that the negative results of such studies must be re-evaluated carefully. Psy-
chological studies into the ways of quantifying beauty or aesthetics inspired by Birkhoff ’s
aesthetic measure continue into the present, see for instance [BL85] and [PSS13].

Moving away from psychology to theory of information, Birkhoff ’s work has had an
impact in this field as applied in the context of the theory of aesthetics. There are two
influential works in this field from 1960s: a book by Abraham Moles Information Theory
and Esthetic Perception, first published in 1958 and most cited in the English translation
from 1966 [Mol66], and Max Bense’s work summarised in a four-volume workAesthetica
published between 1954 and 1960, and in the book Aesthetica. Einführung in die neue
Aesthetik from 1965.

Abraham Moles (1920–1992) was a French information theorist who studied the rela-
tionship between theory of information and aesthetics, with the focus on the relationship
between theory of perception and psychology. Inspired by Shannon’s mathematical the-
ory of communication, he developed Birkhoff ’s ideas into a theory of information and
aesthetic perception. He redefined Birkhoff ’s aesthetic measure from the ratio of order
O and complexity C to their multiplication O × C. The original notion of order O in
Birkhoff ’s measure takes in Moles’ work the form of low entropy, perceived as redun-
dancy and predictability. High entropy is equated with complexity C, perceived as un-
predictability and non-compressibility.

Max Bense (1910–1990) was a German philosopher who is best known today for his
work in philosophy of science, aesthetics and semiotics. Building onwork of Birkhoff and
Shannon, he focused on physical concepts, with the aim of creating rational aesthetics
stripped of its subjective component. In addition to the emphasis on strictly scientific
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methods, Birkhoff and Bense share the definition of the aesthetic measure as the ratio of
order and complexity.

Works by Bense and Moles, inspired by Birkhoff, led to the research in the field of In-
formation Aesthetics (sometimes also Informational Aesthetics). Information Aesthetics
looks for theoretical foundations of aesthetics, viewed from the point of information and
its amount and quality contained in an object. As in Birkhoff ’s work, the goal is to judge
an object by itself, without a subjective component. Research in Information Aesthetics
is still in progress, see for instance [Gre05], [McC05], [RFS08], [Gal12].

In general, the quantitative study of aesthetic perceptions (see for instance [AC98]) is
often based not only on Shannon’s theory of information, but also on Kolmogorov com-
plexity, see for instance [RFS07]. In contrast to the psychological works from 1930s and
1940s, Birkhoff ’s work is now treated withmore flexibility andwith less stress on the exact
wording of the original text. The emphasis is on the main idea that the aesthetic quality
of an object is connected to the notions of order and complexity. The research into the
computational methods in aesthetics continues, with many papers referring to Birkhoff ’s
work giving various functions and methods for computation of the aesthetic measure
of an object, see for instance [HE10], [Pen98]. Nowadays, an important application of
Birkhoff ’s work lies in the computer-aided design, as in [Cle11].

The field of theoretical aesthetics has had some Czech researchers as well: let us men-
tionT. Staudek [Sta99], [Sta02], R. Kozubík [Koz09], J. Nešetřil [Neš94], [Neš05], [AN01],
[BN07] or previous works of the author [DN09], [DN10].

4. A critical discussion of Birkhoff’s work

Birkhoff ’s work in aesthetics has received approximately 850 citations and continues
to influence various fields of research. Researchers inspired by Birkhoff often develop cer-
tain ideas of his, but seldom provide comprehensive critical analysis of his work. How-
ever, on a closer reading one can identify several types of objections appearing in the
literature; we summarise these below.

As we stated above, after the publication of Birkhoff ’s book, psychologists often set up
experiments designed to corroborate or refute Birkhoff ’s thesis. They were mostly inter-
ested in the aesthetic preference of volunteers (for instance [Dav36], [BCP37], [Wil39],
[Eys41], [Gra55], [McW68], [BL85], and [PSS13]). None of the results verified relevance
of the aesthetic measure, and the results did not correlate. Other critical studies, not
specifically designed to test Birkhoff ’s measure, raised the more general objection of the
aesthetic preference of volunteers not educated in arts being substantially different from
the preference of experts or artists.

Still other papers discussed the appropriateness of themathematical formula itself (for
a summary, see for instance [Gal10]); papers with this focus have appearedmore recently,
originating from information aesthetics or computational aesthetics. They often raised
the objection that the formula M = f (O

C ) seems to measure more an aesthetic efficiency
than the level of aesthetic quality, prefers symmetry over beauty, penalises complexity,
and views order and complexity as opposing notions. This type of critical analysis has
been put forward for the original Birkhoff ’s measure, its modifications, and theories and
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models developed by other researchers (such as A. Moles, M. Bense, D. E. Berlyn, and
others).

Additionally, researchers often raise doubts regarding the validity of the choice of pa-
rameters participating in the application of the formula on the given class of objects,
in particular regarding the computation of order, with the underlying problem of dis-
tinguishing formal and connotative associations (see for instance [Yor]). The very dis-
tinction of formal and connotative associations, strongly defended by Birkhoff, has been
questioned.

We can divide critical reactions into three basic groups which address different com-
ponents of Birkhoff ’s theory and its subsequent development: what quantity is measured
by the aesthetic measure (the question of legitimacy), how is it measured (the question
of method), and what is the relevance of the measure for aesthetics (the question of rele-
vance).

Let us start with the first question. Birkhoff gives the following answer to the question
what is measured in formal aesthetics:

“… the basic formal side of art within the perview of the simple math-
ematical formula …”[Bir33, p. viii]

Thus Birkhoff ’s intention was to objectify aesthetics, to identify formal rules which
would be universally transferable and applicable. After 80 years, Birkhoff ’s original in-
tention is still present in attempts tomodel the aesthetic judgment by formal or computa-
tional methods (for instance computer-aided design). These attempts need to solve sev-
eral problems, technically most challenging being the issue of obtaining valid computer-
generated data (this relates to the search for suitable and empirically corroborated formu-
las and algorithms) and of subsequent analysis of the data, not to mention the underlying
question of the possibility of real-world use of results obtained by such formal methods.

If we accept the legitimacy of an aesthetic measure, we can move to the second ques-
tion, i.e. how to define such a measure. Birkhoff refers to older philosophical works to
defend his idea of defining the aesthetic measure as the ratio of order and complexity,
claiming that these works relate the aesthetic quality of an object to the harmony of the
object, to its unity in variety. It seems that the generalised formulaM = f (O,C), treating
M as a function of two variables, for the computation of the aestheticmeasure is generally
accepted since many researchers do see connection between the aesthetic quality of an
object and the two complementary notions: first notion being usually described as or-
der, structure, redundancy of information, repetition, symmetry, fractal pattern, or low
entropy; the second notion being equated to complexity, unpredictability, high entropy,
and non-compressibility. In addition to the formula, one can also analyse its application,
in particular the choice of parameters which take part in the computation. However, the
distinction of formal and connotative associations has always been viewed as problem-
atic. Birkhoff, as a mathematician, solved this problem for polygons by defining as for-
mal those associations which are determined bymovements of the polygons on the plane,
with the effect on the numerical values regarding vertical and rotational symmetries, or
on the value ofHV which captures the properties of the polygon regarding its position in
a grid. One may ask whether such geometrical properties are culturally transferable and
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whether, and to what extent, they are determined by education and cultural background.
A mathematician, for instance, may find symmetry, rotation or other forms of patterns
more appealing and interesting, and sees them as providing good reward for attention of
perception (in Birkhoff ’s words). However, experiments show that artists, on the other
hand, tend to prefer higher entropy and they are less interested in objects with too many
regular features. It is therefore unclear to what extent we can define in a strictly scientific
way formal associations which are supposed to belong to an object itself. The issue of dis-
tinguishing and defining formal and connotative associations has been widely discussed
not only in papers in computational aesthetics, but also in psychological papers. Related
questions have been studied recently in connection to the information contained in an
aesthetic feeling and information processed in an aesthetic judgement.

Finally, we address the last question of relevance of the measure to aesthetics. In the
papers we have discussed, these questions appear only indirectly, but from the philosoph-
ical point of view they present a major difficulty. It is not only the question of reducing
aesthetics or aesthetic feeling to formal properties of an object, but themore general prob-
lemwhether an aesthetic judgement is composed from individual properties of an object.
Birkhoff ’s measure postulates that an aesthetic information can decomposed into compo-
nents which can be evaluated separately. Research in the field of computational aesthetics
proceeds similarly. Hence, these methods discard not only the subject, but also the inter-
action between subject and object and all other external circumstances. It seems that the
resulting aesthetic judgment or aesthetic preference may be a function of the aesthetic
measure itself: A = g (M, … ), where A is the final aesthetic judgment. It remains to be
seen whether A can be described in more detail and to what extent we can considerM as
an input parameter of an aesthetic judgement.

In conclusion, let us emphasise that in evaluating problematic issues in Birkhoff ’s work
we should not forget his initial assumptions – we do not claim that his theory, or its gen-
eralisations, should solve the whole question of the aesthetic judgement, i.e. we do not
search for TOE – theory of everything in the physical sense. The purpose of the research
is to gain at least a partial understanding of aesthetics using formal methods, even at the
risk of inaccuracies and non-correlation with the subjective notion of aesthetic prefer-
ence. The wide influence of Birkhoff ’s work suggests that his methods do provide such
an insight.
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ABSTRACT
In this survey paper, we will summarise some of the more and less known results
on the generalisation of the Easton theorem in the context of large cardinals. In
particular, we will consider inaccessible, Mahlo, weakly compact, Ramsey, measur-
able, strong,Woodin, and supercompact cardinals. The paper concludeswith a result
from the opposite end of the spectrum: namely, how to kill all large cardinals in the
universe.
Keywords: continuum function, large cardinals

1. Introduction

One of the questionswhich stood at the birth of set theory as amathematical discipline
concerns the size of real numbersR. Cantor conjectured that there is no subset of the real
line whose cardinality is strictly between the size of the set of natural numbers and the
size of all real numbers. With the axiom of choice, this is equivalent to saying that the
size of R is the least possible in the aleph hierarchy:

The Continuum Hypothesis, CH: |R| = 2ℵ0 = ℵ1.
Hilbert included this problem in 1900 as the number one question on his influential list
of 23 open problems in mathematics.

It is well known now that CH is independent of the axioms of ZFC.1 First Gödel showed
in 1930s that CH is consistent with ZFC (using the constructible universe L), and then in
1960s Cohen showed that ¬CH is consistent with ZFC (with forcing). Regarding Cohen’s
result, one naturally inquires howmuch CH can fail in Cohen’s model; it is a witness to the
remarkable utility of themethod of forcing that virtually the same proof gives the greatest
possible variety of results: in principle,

(*) if κ is any cardinal with uncountable cofinality, then 2ℵ0 = κ is consistent.
There is a small issue how to express (*) properly. We can view (*) as a statement

about consistency of a theory, in which case κ should either be a parameter or should be
definable in ZFC,2 or (*) can be taken as a statement about pairs of models of ZFC. It is the
latter approach which is more useful and general:

1 If ZFC is consistent, which we will assume throughout the paper.
2 E.g. ℵω+3, ℵω1

, or the first weakly inaccessible cardinal (if there is one).
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Theorem 1.1 (Cohen, Solovay). Let κ be a cardinal with uncountable cofinality in V ,
and assume κω = κ in V . Then there is a cofinality-preserving extension V [G] of V such
that V [G] ⊧ (2ℵ0 = κ).

Easton [9] generalised this result to all regular cardinals. Let us write Card for the
class of cardinals and Reg for the regular cardinals. Let F be a function from Reg to Card.
Assume further that F satisfies for all κ, λ in Reg:
(i) κ < λ → F(κ) ≤ F(λ).
(ii) κ < cf(F(κ)).

Let us call such an F an Easton function. We say that an Easton function F is realised in
a model M if Reg = RegM and for all regular κ in M, F(κ) = 2κ .

Theorem1.2 (Easton). AssumeV satisfiesGCH and letF be anEaston function definable
overV . Then there is a definable cofinality-preserving proper-class forcing notionP such that
if G is P-generic, then in V [G],

(∀κ ∈ Reg)(2κ = F(κ)),

i.e. F is realised in V [G].

There are more general statements of Easton’s theorem which remove the restriction
of definability of F. Such generalisations usually require additional assumptions above
ZFC: one can for instance start with an inaccessible cardinal κ and GCH below κ, and set
M = H(κ). Then M is a transitive model of ZFC + GCH. An Easton function F for M
is now an element of H(κ+), and may not be definable over M. Easton’s theorem now
generalizes as follows:3

Theorem 1.3 (Easton, generalised version). Let κ be an inaccessible cardinal and denote
M = Vκ , and let F be an Easton function defined on regular cardinals α < κ. Assume further
that GCH holds below κ. Then there is a cofinality-preserving forcing notion of size κ such
that if G is P-generic over V , then inM[G],4

(∀α ∈ Reg)(2α = F(α)),

i.e. F is realised inM[G].

Easton’s theorem solves the problemof the possible behaviours of the continuum func-
tion on regular cardinals in models of ZFC in full generality. Mathematicians briefly con-
jectured that Easton’s theorem could be extended to all cardinals – including the singular
cardinals. However, Silver soon proved the following limiting theorem which shows that
ZFC controls the continuum function more tightly on singular cardinals:

Theorem 1.4 (Silver). Let κ be a singular strong limit cardinal of uncountable cofinality.
If the set {μ < κ | 2μ = μ+} is stationary in κ, then 2κ = κ+.

SCH, SingularCardinalHypothesis, is aweakening ofGCH and says that if κ is a singular
strong limit cardinal, then 2κ = κ+.5 Silver’s theorem claims that the validity of SCH at a

3 In the rest of the paper, we will not distinguish between these two versions of Easton’s theorem.
4 M[G] is now viewed as a constructible closure of M relative to an additional predicate G.
5 There are more versions of SCH, some of them formulated for all singular cardinals.
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singular strong limit κ is determined by the continuum function on singular strong limit
cardinals below κ: in particular, if SCH holds below κ, it must hold at κ.

Surprisingly, similar restrictions hold for regular cardinals which exhibit some combi-
natorial properties associated to large cardinals (see for instance Lemma 1.17), provided
we wish to preserve these properties while realising an Easton function. Acknowledging
the importance of large cardinals in current set theory, do we have a satisfactory analogue
of Easton’s theorem for extensions of ZFCwith large cardinals? Wewill study this question
in the following sections, defining all necessary notions as we proceed.

Remark 1.5. Due to lack of space, we completely disregard in this paper other possible,
and interesting, generalisations of the Easton theorem: (i) one can for instance study the
effect of former large cardinals on the continuum function (e.g. a regular κ with the tree
property), (ii) consider other cardinal invariants in addition to 2κ (see [6]), and finally
(iii) consider the continuum function on all cardinals. Regarding (iii), as we mentioned
above, there are some analogies between the restrictions valid for singular strong limit
cardinals of uncountable cofinality (Silver’s theorem) and restrictions valid for e.g. mea-
surable cardinals (Lemma 1.17). However, there are also subtle differences which prevent
an easy transfer of the respective results. In particular, in Lemma 1.17, the setA is required
to be in a normal measure, not just stationary, as in Silver’s theorem.

1.1 Large cardinals

We review some of the more basic large cardinals. The cardinals are listed in the in-
creasing order of strength: inaccessible < Mahlo < weakly compact < Ramsey < mea-
surable < strong < strongly compact, supercompact.6 Slightly apart, there is the Woodin
cardinal which in terms of consistency strength is roughly on the level of a strong cardinal,
while it may not be even weakly compact (it is always Mahlo, though).

Proofs of results stated below as facts or mentioned in passing can be found in [14] or
[15].

Definition 1.6. Let κ be a regular uncountable cardinal. We say that κ is inaccessible if
2λ < κ for every λ < κ (this property is called being a strong-limit cardinal).

Note that if GCH holds, then κ is inaccessible if and only if κ is regular and limit cardi-
nal.

A slight strengthening of inaccessibility is Mahloness.

Definition 1.7. We say that an inaccessible cardinal κ is Mahlo if the set of regular car-
dinals below κ is stationary.

Lemma 1.8. If κ is Mahlo, then the set of inaccessible cardinals is stationary below κ.

6 < in this case means both the consistency strength and the provable implication: thus for instance a Mahlo
cardinal has a strictly larger consistency strength than an inaccessible cardinal, and every Mahlo cardinal is
an inaccessible cardinal. It is conjectured that the supercompact and strongly compact cardinals have the
same consistency strength; in terms of the implication, a supercompact cardinal is always strongly compact,
but not conversely.
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Proof. Recall the definition of the functionℶ: ℶ0 = ℵ0, ℶα+1 = 2ℶα , andℶγ = sup{ℶδ | δ <
γ} for γ limit. By the inaccessibility of κ, the set

A = {μ < κ | ℶμ = μ}

is a closed unbounded set of limit cardinals.
We want to show that every closed unbounded set C ⊆ κ contains an inaccessible

cardinals. By the previous paragraph, C ∩ A is a closed unbounded set. By Mahloness,
the set of regular cardinals is stationary, and therefore it must meet C ∩ A. Hence, there
is μ ∈ C ∩ A which is a regular cardinal. By the definition of A, μ is strong-limit and
therefore inaccessible. �

As the next large cardinal after Mahlo cardinal, we review the weakly compact cardi-
nal. There are many equivalent definitions of weak-compactness. The one we give first is
formulated in terms of trees:

Definition 1.9. An inaccessible κ is weakly compact if every κ-tree7 has a cofinal branch.

Note that this definition points to the original motivation for this cardinal: recall that
König’s theorem (that every ω-tree has a cofinal branch) can be used to prove the com-
pactness theorem for the first-order logic. For a stronger logic which allows infinite quan-
tifications, conjunctions and disjunctions, the similar proof goes through if κ is weakly
compact (because the generalisation of König’s theorem holds for κ).

An equivalent definition directly postulates a reflection property. We say that a for-
mula φ in the language of set theory with two types of variables is Π1

1 if it contains at the
beginning a block of universal quantifiers over subsets of the target domain (second-order
variables), followed by the usual first-order quantification over elements of the target do-
main (first-order variables). Thus ∀X∃x(x ∈ X) is true over a structure (M, ∈) if for
every A ⊆ M there is some a ∈ M such that a ∈ A. We write φ(R) to indicate that φ
contains a free second-order variable R (we call R a parameter).

Fact 1.10. The following are equivalent:
(i) κ is weakly compact.
(ii) κ is inaccessible and for every R ⊆ Vκ and every Π1

1 formula φ(R),

(1.1) If (Vκ, ∈,R) ⊧ φ(R), then
(∃α < κ, α inaccessible)(Vα, ∈,Vα ∩ R) ⊧ φ(R ∩ Vα).

Note that we can also view (Vκ, ∈,R) as a first-order structure with a predicate R; if
κ is Mahlo, then the usual Löwenheim-Skolem theorem implies (ii) of Fact 2.10 for all
first-order formulas φ(R). However, to get (ii) for Π1

1 formulas, the usual Löwenheim-
Skolem theorem no longer suffices because now it should be applied over the first-order
structure (Vκ+1,Vκ, ∈,R), and there is no guarantee it will yield a substructure of the
form (Vα+1,Vα, ∈,R ∩ Vα).

Lemma 1.11. Suppose κ is weakly-compact and x is a cofinal subset of κ. If x ∩ α ∈ L
for every α < κ, then x ∈ L.

7 A tree of height κ whose levels have size < κ.
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Proof. Sketch. Suppose x ∉ L. Then there is a Π1
1 sentence φ such that (Vκ, ∈, x) ⊧ φ(x)

if and only if x is not in L. φ contains a second-order quantifier which ranges over all
subsets of κ which code levels of L of size at most κ and says that in no such level of L, x
is constructed.

By weak-compactness, φ is reflected to some α < κ, which gives (Vα, ∈, x ∩ α) ⊧
φ(x ∩ α), which is equivalent to x ∩ α ∉ L, contradicting our initial assumption. �

A weakly compact cardinal has another useful characterisation by means of colour-
ings. If κ is a regular cardinal, then a colouring of two-element subsets of κ by two colours
is a function f ∶ [κ]2 → 2. We say that H ⊆ κ is homogeneous for f if f ↾ [H]2 has size 1.

Fact 1.12. The following are equivalent for an inaccessible κ:
(i) κ is weakly compact.
(ii) Every colouring f ∶ [κ]2 → 2 has a homogeneous set of size κ.

By considering more complex colourings, we can obtain a stronger large cardinal no-
tion:

Definition 1.13. Let κ > ω be an inaccessible cardinal. We say that κ is a Ramsey
cardinal if every colouring f ∶ [κ]<ω → 2 has a homogeneous set of size κ.

By definition, every Ramsey cardinal is weakly compact. Moreover, one can show that
if there is a Ramsey cardinal, then V ≠ L. Thus being Ramsey is a substantial strength-
ening of weak compactness which is compatible with L.

Another cardinal we will mention is the measurable cardinal:

Definition 1.14. We say that an inaccessible κ is measurable if there is a non-principal8
κ-complete9 ultrafilter U on κ. U is often called a measure.

Fact 1.15. The following are equivalent:
(i) κ is measurable.
(ii) There is an elementary embedding10 j ∶ V → M, whereM is a transitive class, j↾κ =

id and j(κ) > κ. (We call κ the critical point of j.)
If (ii) holds, we can find an embedding j′ ∶ V → M′ which in addition satisfies that
κ+ = (κ+)M′ , H(κ+)M′ = H(κ+), andM′ is closed under κ-sequences in V .

We should say something about proving (i)→(ii) because it features the important
concept of an ultrapower. Assume that U is a measure on κ. For f , g ∶ κ → V define
f ≡ g ⇔ {ξ < κ | f (ξ) = g(ξ)} ∈ U . For every f ∶ κ → V , define

[f ] = {g | g ∶ κ → V & f ≡ g}.

We would like to say that the collection of all [f ]’s forms a partition of the class of all
functions κ → V ; this is the case, but it presents the problem that this collection is a class

8 For no α < κ, {α} ∈ U .
9 If Xi, i < μ < κ are in U , then ⋂i<μ Xi is in U .
10 j is a proper class; thus we should view this definition as taking place in GB set theory, or more technically –

but preferably – as a statement expressible in ZFC because the relevant part of j which we need, j↾H(κ+), is
a set.
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of classes, making it an illegal object in set theory. We will therefore identify [f ] with the
sets in [f ] of minimal rank. Using this identification, denote

Ult(V ,U) = {[f ] | f ∶ κ → V}.

Define the interpretation of ∈ on elements of Ult(V ,U): [f ] ∈ [g] ⇔ {ξ < κ | f (ξ) ∈
g(ξ)} ∈ U .

Theorem 1.16 (Łos). For every φ and f1, … , fn:

(1.2) Ult(V ,U) ⊧ φ[[f1], … , [fn]] ⇔ {ξ < κ |φ(f1(ξ), … , fn(ξ))} ∈ U .

By ω1-completeness of the measure U , the relation ∈ on Ult(V ,U) is well-founded,
and one can therefore collapse the structure (Ult(V ,U), ∈), obtaining a transitive proper
classmodel. The proof (i)→(ii) is finished by taking for j the composition of the canonical
ultrapower embedding j′ ∶ V → Ult(V ,U) defined by

j′(x) = [cx],

where cx ∶ κ → {x}, and of the collapsing isomorphism π:

j = π ∘ j′.

We say that U is normal if

(1.3) [id] = κ.

One can show that if κ is measurable, there always exists a normalmeasure. Property (1.3)
is useful for computing information about ultrapowers; see Lemma 1.17 for an application.

Lemma 1.17. Assume κ is measurable and let U be a normal measure. If A = {α <
κ | 2α = α+} is in U , then 2κ = κ+.

Proof. Let Ult(V ,U) be the transitive collapse of the ultrapower, as discussed above after
Fact 1.15. By Łos theorem, A ∈ U implies

Ult(V ,U) ⊧ 2[id] = [id]+

which is by normality the same as

Ult(V ,U) ⊧ 2κ = κ+.

As stated in Fact 1.15, κ+ = (κ+)Ult(V ,U), and H(κ+) = (H(κ+))Ult(V ,U). This implies
𝒫𝒫(κ) = (𝒫𝒫(κ))Ult(V ,U). Therefore any bijection g ∈ Ult(V ,U) between (κ+)Ult(V ,U) and
𝒫𝒫(κ)Ult(V ,U) is a bijection between κ+ and 𝒫𝒫(κ) in V , proving 2κ = κ+. �

A useful set which belongs to any normal measure is

I = {α < κ | α is inaccessible}.

I is stationary and co-stationary, i.e. (κ⧵I) is also stationary. I is in every normalmeasure
because κ = [id] is inaccessible in Ult(V ,U); by Łos theorem this implies that I is in U .
By a similar argument one can show that if C is club in κ, then C ∈ U : in the ultrapower,
κ ∈ j(C), which by Łos theorem is equal to C ∈ U . Note that Lemma 1.17 depends on
ultrafilter U in the following sense. Denote

A = {α < κ | 2α = α+}.
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To argue that 2κ = κ+ it suffices to find at least one normal measure U which contains A.
As we discussed, if A is club or a set of inaccessibles, then all normal measures contain A.
However, ifA is just stationary, then it is not the case in general that there is some normal
measureU which contains A. In fact, it is consistent that A is stationary and 2κ > κ+ (see
Lemma 2.14).

By strengthening the properties of the elementary embedding in the definition of a
measurable cardinal, we get the notion of a strong cardinal. For more motivation and
properties of strong cardinals, see Section 2.3.

Definition 1.18. We say that an inaccessible cardinal κ is H(λ)-strong, κ < λ regular, if
there is an elementary embedding j ∶ V → M with critical point κ, j(κ) > λ, H(λ) ⊆ M,
andM is closed under κ-sequences in V .

We say that κ is strong if it is H(λ)-strong for every regular λ > κ.

By definition, being measurable is the same as being H(κ+)-strong.
By strengthening the closure properties of the target model M in the definition of a

strong cardinal, we obtain an even stronger notion of a supercompact cardinal (see Def-
inition 1.21). However, we first define the notion of a strongly compact cardinal, using a
generalisation of the ultrafilter definition of a measurable cardinal. In preparation for the
definition, let us define the following: Let κ ≤ λ be cardinals, κ regular, and set

Pκλ = {x ⊆ λ | |x| < κ}.

For x ∈ Pκλ, define
̂x = {y ∈ Pκλ | x ⊆ y}.

Finally, define
F(κ, λ) = {X ⊆ Pκλ | (∃x ∈ Pκλ) ̂x ⊆ X}.

We call F(κ, λ) a fine filter on Pκλ.

Lemma 1.19. F = F(κ, λ) is a κ-complete filter.

Proof. Follows because for {xi | i < μ < κ} ⊆ Pκλ,

⋂
i<μ

̂xi =
̂
⋃
i<μ

xi.

�

Definition 1.20. Assume κ ≤ λ are cardinals, κ inaccessible. We call κ λ-strongly com-
pact if the fine filter F(κ, λ) can be extended into a κ-complete ultrafilter on Pκλ. We call κ
strongly compact if it is λ-strongly compact for all λ ≥ κ.

Strongly compact cardinals are much stronger than measurable cardinals (regarding
consistency strength); however, by a result of Magidor from 70s the first measurable car-
dinal can be strongly compact.

By demanding that there is a κ-complete ultrafilter extending F(κ, λ) which is also nor-
mal (we will not define this notion, see [14], p. 374), we get the notion of a supercompact
cardinal. A characterisation of supercompactness by means of elementary embeddings
is very convenient:
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Definition 1.21. Let κ be an inaccessible cardinal, and let λ ≥ κ be a cardinal. We say
that κ is λ-supercompact if there is an elementary embedding j ∶ V → M with critical point
κ such that j(κ) > λ and λM ⊆ M. A cardinal κ is supercompact if it is λ-supercompact for
every λ ≥ κ.

Finally, we define a large cardinal notion due to Woodin which he used in the analysis
of the Axiom of Determinacy.

Definition 1.22. Let δ > ω be an inaccessible cardinal. We say that δ is a Woodin
cardinal if for every function f ∶ δ → δ there is a κ < δ with f "κ ⊆ κ and there is
j ∶ V → M with critical point κ such that Vj(f )(κ) ⊆ M.

A Woodin cardinal is always Mahlo, but may not be weakly compact. Its consistency
strength is quite high (by definition, there aremany cardinals on the level of aH(μ)-strong
cardinal, for some μ, below a Woodin cardinal).

2. The continuum function with large cardinals

Assume κ is a large cardinal in V which satisfies GCH and F is an Easton function.
Can we find a generic extension of V which realises F and preserves the largeness of a
fixed large cardinal κ? Clearly, a necessary condition on F is that it should keep κ strong
limit. We can formulate this property globally for the class of large cardinals we wish to
preserve. Let Γ be a class of regular cardinals. We say that F respects Γ if

(2.4) (∀κ ∈ Γ)(∀μ ∈ Reg ∩ κ)(F(μ) < κ).

In anticipation of the generalisation of Easton’s theorem to large cardinals, we can
tentatively formulate two distinguishing criteria, (R−), (R) and (L−), (L), which help to
characterise large cardinals according to their sensitivity to the manipulation with the
continuum function:

(R−) Cardinals without obvious reflection properties relevant to the continuum func-
tion11 such as inaccessible, Mahlo, weakly compact, and Woodin or Ramsey car-
dinals.

(R) Cardinals with reflection properties relevant to the continuum function, such as
measurable cardinals.

A typical effect of reflection ofmeasurable cardinals regarding the continuum function
is captured in Lemma 1.17 above.

Remark 2.1. The notion of reflection is often used in a broad sense (for instance, Fact
2.10 provides a notion of reflection for Π1

1-formulas). In (R−) and (R), we use it in a very
restricted sense: κ has a reflection property (relevant to the continuum function) if 2κ
depends on the values of 2α, for α < μ.

A different classification is based on what is called fresh subsets:

11 Of course, only after we generalise Easton’s theorem to these cardinals we know for certain that they have
no “hidden” reflection properties.
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Definition 2.2. LetM ⊆ N be two transitivemodels of set theorywith the same ordinals.
Let κ be a cardinal inN . We say that x ⊆ κ is fresh if x ∈ N⧵M and for all α < κ, x∩α ∈ M.

For instance Cohen forcing12 at a regular cardinal κ adds a fresh subset κ.
(L−) Cardinals which are not obviously influenced by fresh subsets such as inaccessible

and Mahlo cardinals.
(L) Cardinals which may be destroyed by adding fresh subsets such as weakly com-

pact cardinals, or measurable cardinals.
Lemma 1.11 identifies this restriction for weakly compact cardinals.
As we will see, the first distinction (R−) and (R) is relevant for the possible patterns of

the continuum function which can be realised, while the second distinction (L−) and (L)
is relevant for the appropriate method of forcing.

The following forcing, defined in Easton [9], will be refereed to as the product-style
Easton forcing, and denoted it Pproduct

F .

Definition 2.3. Let F be an Easton function. For all regular cardinals α, define Qα to
be the Cohen forcing Add(α, F(α)). Define

Pproduct
F =

Easton

∏
α∈Reg

Qα,

where the upper index indicates that the forcing has the “Easton support”: for every inac-
cessible α and any condition p ∈ Pproduct

F , dom(p) ∩ α is bounded in α.

Note in particular that if there are no inaccessible cardinals, then the forcing is just a
full-support product of Cohen forcings. It is relatively straightforward to compute that
if GCH holds in the ground model, then Pproduct

F preserves all cofinalities and forces 2α =
F(α), for all regular α.

As we indicated above in the paragraph after the definition of a fresh subset, a product-
style forcing will not be good enough for preservation of large cardinals with reflection
as in Lemma 1.11. In anticipation of a solution to this problem, we define a variant of
Easton forcing which appeared already in [17]. For this definition, let us first define some
notions. If F is an Easton function, letCF be the closed unbounded class of limit cardinals
which are the closure points of F: i.e.

CF = {α | α limit cardinal & (∀β ∈ α ∩ Reg)(F(β) < α)}.

Notice that if F respects Γ, see (2.4), then Γ is included in CF .

Definition 2.4. Let F be an Easton function. By reverse Easton forcing we mean the
forcing PF defined as follows. For every pair (α, β) of successive elements of CF , let us write

Qα,β =
Easton

∏
γ∈[α,β)∩Reg

Add(γ, F(γ)).

12 If α is a limit ordinal and β > 0 is an ordinal, we define the Cohen forcing at α for adding β-many subsets
of α, Add(α, β), as the collection of all functions from α × β to 2 with domain of size < |α|. Ordering is
by reverse inclusion. Of course, Add(α, β) is equivalent to Add(|α|, |β|), but the more general notation is
often useful.
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PF is the iteration (⟨Pα | α ∈ Ord⟩, ⟨ ̇Qα | α ∈ Ord⟩) with Easton support such that ̇Qα is
the canonical name for the trivial forcing whenever α is not in CF . If α is in CF , let ̇Qα be a
name for the forcing Qα,β, where β is the successor of α in CF .

2.1 Inaccessible and Mahlo cardinals

Let F be an Easton function respecting inaccessible cardinals, i.e. respecting Γ = {α | α
is inaccessible} according to (2.4). To generalise Easton’s theorem to F, it suffices to check
that the forcing Pproduct

F preserves cofinalities of all κ ∈ Γ. As we indicated after Def-
inition 2.3, cofinalities are preserved for all cardinals if V satisfies GCH, which yields the
following theorem:

Theorem 2.5. Let V satisfy GCH and let F be an Easton function respecting inaccessible
cardinals. Let A0 be the class of all inaccessible cardinals. Then in any generic extension
V [G] by Pproduct

F , the set of inaccessible cardinals coincides with A0.

One can formulate a version of the theorem for Mahlo cardinals.

Theorem 2.6. Let V satisfy GCH and let F be an Easton function respecting Mahlo car-
dinals. Let A0 be the class of all Mahlo cardinals. Then in any generic extension V [G] by
Pproduct
F , the set of Mahlo cardinals coincides with A0.

Proof. Let G be Pproduct
F -generic and let κ be a Mahlo cardinal in V . Since the set of

inaccessible cardinals I is stationary in κ in V , CF ∩ I is also stationary. It follows by
Theorem 2.5 that all inaccessible α ∈ CF ∩ I, and also κ, remain inaccessible in V [G].
To finish the argument, it suffices to check that CF ∩ I is still stationary in V [G]. Factor
Pproduct
F into P0 × P1 such that P1 is κ-closed and P0 is κ-cc:13 P1 preserves stationary

subsets of κ because it is κ-closed; as P1 forces that P0 is κ-cc, P0 preserves stationary
subsets over VP1 . Thus P = P0 × P1 preserves stationary subsets of κ, and in particular
stationarity of CF ∩ I. �

Actually, the reverse Easton iteration PF achieves the same result here. The point is
that for every Mahlo κ, one can show that (PF)κ , the restriction of PF to κ, is κ-cc, and
the tail iteration is forced to be κ-closed.

Remark 2.7. We have argued that the relevant forcings do not kill inaccessible or
Mahlo cardinals. To get the results above, we also need to argue that the forcings do
not create new large cardinals. However, notice that Pproduct

F and PF cannot create new
inaccessible cardinals because these forcings preserve cofinalities, and therefore a non-
inaccessible cardinal α in the ground model must remain non-inaccessible in the exten-
sion. Similarly, a non-stationary set of inaccessible cardinals cannot become stationary,
and thus new Mahlo cardinals cannot be created.

13 P0 is defined as Pproduct
F , but with the domain of the functions in the product limited to κ ∩ Reg; similarly,

P1 has the domain limited to Reg ⧵ κ.



65

2.2 Weakly compact cardinals

It is easy to find an example where the product-style Easton forcing Pproduct
F destroys

weak-compactness of some cardinal κ, over some well-chosen ground model such as L.

Lemma 2.8. Assume that κ is weakly compact and let F be an Easton function. Then
over L, Pproduct

F kills weak-compactness of κ.

Proof. Pproduct
F factors at κ toP0×P1×P2, whereP0 isPproduct

F restricted to regular cardinals
< κ, P1 is the forcing Add(κ, F(κ)), and P2 is the restriction to regular cardinals > κ. We
argue that P1 kills the weak-compactness of κ, and neither P0, nor P2 can resurrect it.

The fact that P1 kills weak-compactness of κ follows from Lemma 1.11 (because it adds
many fresh subsets of κ over L). It follows that after forcing with P1, there exists a κ-
tree without a cofinal branch. Since P2 cannot add a branch to a κ-tree because it is
κ+-distributive over VP1 , κ is not weakly compact in VP1×P2 .

Finally notice that P0 is κ-Knaster inVP1×P2 by the usual Δ-lemma argument (and the
fact that κ is Mahlo here). Using the fact that a κ-Knaster forcing cannot add a branch to
a κ-tree (see [1]), we conclude that in VPF there exist a κ-tree without a cofinal branch,
contradicting weak-compactness of κ. �

In order to formulateTheorem 2.6 for weakly compact cardinals, we need to introduce
a very universal technique for verification of preservation of large cardinals. This tech-
nique uses the characterisation of many large cardinals by means of suitable elementary
embeddings between transitive sets or classes. In order to show that a certain large cardi-
nal κ remains large in a generic extension, it suffices to check that the original embedding
from V “lifts” to an embedding in the generic extension (this is in general easier than to
verify that there exists an elementary embedding in the extension). The following lemma
of Silver is the key ingredient:

Lemma 2.9 (Silver). AssumeM and N are transitive models of ZFC, P ∈ M is a forcing
notion, and j ∶ M → N is an elementary embedding. Let G be P-generic over M, and let
H be j(P)-generic over N . Then the following are equivalent:
(i) (∀p ∈ G)(j(p) ∈ H).
(ii) There exists an elementary embedding j+ ∶ M[G] → N[H] such that j+(G) = H and

j+ ↾M = j.

We say that j+ is a lifting of j. If j has some nice property (like being an extender
embedding), the lifting j+ will often have it as well. More details about these concepts can
be found in [5].

This is a useful characterisation of weakly compact cardinals (proof can be found
in [5]):

Fact 2.10. Let κ be an inaccessible cardinal. The following are equivalent.
(i) κ is weakly compact.
(ii) For every transitive setM with |M| = κ, κ ∈ M, and <κM ⊆ M, there is an elementary

embedding j ∶ M → N where N is transitive, |N| = κ, <κN ⊆ N , and the critical
point of j is κ.
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Now, using the characterisation of weak-compactness by elementary embeddings, one
can show:

Theorem 2.11. Let V satisfy GCH and let F be an Easton function respecting weakly
compact cardinals. Let A0 be the class of all weakly compact cardinals. Then in any generic
extension V [G] by PF , the set of weakly compact cardinals coincides with A0.

Proof. The proof has two parts: Part 1 proves that all weakly compact cardinals in V
remain weakly compact in V [G]. In Part 2, which corresponds to Remark 2.7 above, we
argue that the forcing does not create new weakly compact cardinals.

Part 1.
The proof is given in [3]; we will only briefly identify the main points, assuming some

familiarity with lifting arguments. The proof is similar to an argument in [5], section 16 –
when one uses the forcing PF – with one extra twist to be resolved: assuming κ is weakly
compact, in [5], one forces below κ with a reverse Easton forcing which at every inac-
cessible α < κ forces with Add(α, 1). At κ, one can force with Add(κ, μ) for an arbitrary
μ because any κ-tree which supposedly does not have a cofinal branch is captured by a
subforcing of Add(κ, μ) which is isomorphic to Add(κ, 1); thus the preparation below
κ matches the forcing at κ, making it possible to use a standard lifting argument with a
master condition. In Theorem 2.11, the preparation below κ is determined by F so it may
not be possible to force just with Add(α, 1) at every inaccessible α < κ; in particular if
j ∶ M → N is an embedding ensured by Fact 2.10, we need to force with Add(κ, j(F)(κ))
on the N-side; this introduces a mismatch between the forcings at κ between M and N :
Add(κ, 1) vs. Add(κ, j(F)(κ)). In order to lift to j(Add(κ, 1)), one therefore needs to
make sure to have on the N-side available the generic filter g for Add(κ, 1). In [3], the
solution is to include g on the first coordinate of the generic filter for Add(κ, j(F)(κ)).
The rest of the argument is standard.

Part 2.
The situation of a weakly compact cardinal is a bit more complicated than in the anal-

ogous Remark 2.7. By Kunen’s construction [16], it is possible to turn a weakly compact
cardinal κ into a Mahlo non-weakly compact cardinal by forcing a κ-Souslin tree, and
resurrect its weak-compactness by forcing with the Souslin tree added earlier. However,
it is easy to check that this kind of anomaly will not occur with our forcing.

Let κ be a Mahlo non-weakly compact cardinal in V which is a closure point of F; it
follows there is a κ-tree T in V which has no cofinal branch in V . Denote R = (PF)κ ,
and ̇Q = Add(κ, F(κ)); it suffices to check that R ∗ ̇Q cannot add a branch through T . R
cannot add a cofinal branch because it is κ-Knaster. Over VR, ̇Q cannot add a branch to
T because it is κ-closed (if p in ̇Q forced that ̇B is a cofinal branch through T , then one
could find a decreasing sequence of conditions ⟨pi | i < κ⟩, p0 = p and a ≤T -increasing
sequence ⟨bi | i < κ⟩ such that pi ⊩ bi ∈ T ; the sequence ⟨bi | i < κ⟩ would be a cofinal
branch in T in VR). �

Thus for inaccessible, Mahlo and weakly compact cardinals, there are no restrictions
on the Easton functions F which can be realised, except that these cardinals must be
closure points of F. In particular, the reflection property identified in Lemma 1.11 did
have an effect on the technique (PF over Pproduct

F ), but not on the result. In the next
section, we learn that the case of measurable cardinals is far more complicated.
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2.3 Measurable,H(λ)-strong, and strong cardinals

It follows from Lemma 1.17 that to preserve measurable cardinals, we must expect that
the full generalisation along the lines of Theorems 2.6 and 2.11 cannot be achieved. There
are two easy properties to notice regarding restrictions on the continuum function by
measurable cardinals:
(a) There is an obvious asymmetry in the sense that Lemma 1.17 prohibits 2κ “jumping

up”with respect to the values 2α forα < κ, while “jumping down” is perfectly possible.
See Lemma 2.12.

(b) The restrictions which a measurable cardinal κ puts on the continuum function also
depend on the normal measures which exist on κ (and not only on the fact that κ is
measurable). See Lemma 2.14.

We first deal with (a).

Lemma 2.12. Assume that κ is measurable and 2κ > κ+. Let P be the collapsing forcing
Col(κ+, 2κ) which collapses 2κ to κ+ by functions of size at most κ. Then in VP , κ is still
measurable and 2κ = κ+.

Proof. By κ+-closure of P, every measure on κ in V remains a measure in VP because P
does not add new subsets of κ to measure (nor new κ-sequences of such sets). Notice that
the result did not assume that {α < κ | 2α = α+} is big in the sense of some measure on κ.

�
We will deal with (b) after we define the notion of an H(λ)-strong cardinal.
Apart from the easy observations (a) and (b), we in addition have:

(c) The consistency strength of a measurable cardinal κ with 2κ > κ+ is o(κ) = κ++, see
[12]. Thus to play with the continuum function and preserve measurability of cardi-
nals, one typically needs to assume that these cardinals are larger than measurable in
the ground model.

In view of (c), we now define a suitable strengthening of measurability.

Definition 2.13. We say that an inaccessible cardinal κ isH(λ)-strong, κ < λ regular, if:
(i) There is an elementary embedding j ∶ V → M with critical point κ, j(κ) > λ, such

that
(ii) H(λ) ⊆ M, andM is closed under κ-sequences in V .
We say that κ is strong if it is H(λ)-strong for every regular λ > κ.

Wenote thatwithGCH, κ beingH(κ++)-strong is equivalent to havingMitchell order of
κ+++1, a slight strengthening of the assumption identified by [12] as optimal for obtaining
the failure of GCH at a measurable cardinal.

As promised, we now deal with the property (b).

Lemma 2.14. Assume κ is H(κ++)-strong and that GCH holds in the universe. Denote
I = {α < κ | α is inaccessible}.

Then there exist a stationary subset X of I, distinct normal measures U ,W on κ, and a
forcing notion P such that:
(i) X ∈ W and (I ⧵ X) ∈ U ,
(ii) Assume G is P-generic. In V [G], κ is measurable, 2κ = κ++, 2α = α+ for all α ∈ X,

and 2α = α++ for all α ∈ (I ⧵ X).
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In particular,W cannot be extended into a normal measure in VP .

Proof. LetU ,W be two distinct normal measures on κ in V . We know that I is in bothU
and W ; therefore for some A ⊆ I, A ∈ U and B = (I ⧵ A) ∈ W (if U and W agreed on
all subsets of I, they would agree on all subsets of κ).

Let j ∶ V → M be an elementary embedding witnessingH(κ++)-strength of κ. With-
out loss of generality assume that κ ∈ j(A) (and κ ∉ j(B)). We define P so that B = X is
as desired.

Let Q be the standard reverse Easton iteration which at every α ∈ (I ⧵ X) forces with
Add(α, α++). By an argument involving “surgery”, see [5], one can show that there is a
forcing ̇R such that denoting P = Q ∗ ̇R, in VP all cofinalities are preserved, 2κ = κ++,
and κ is measurable. Moreover, inVP , X and (I ⧵X) are stationary subsets of inaccessible
cardinals such that 2α = α++ for α ∈ (I ⧵ X), and 2α = α+ for α ∈ X.

It follows that U extends to a normal measure in VP , while by Lemma 1.17, W (and
any other normal measure containingX) cannot extend into a normal measure inVP . �

This lemma should be understood as follows: while W prohibits certain values of the
continuum function in V because X ∈ W (e.g. implies 2κ = κ+), this restriction is not
persistent to larger models: in VP , 2κ = κ++ is possible even though X is still a stationary
subset composed of inaccessible cardinals. This scenario is made possible by the assump-
tion that there is at least one embedding j inV for which the set I⧵X is big – using this jwe
can kill all normalmeasures which containX, while ensuring that some normalmeasures
still exist in VP .

These consideration lead to the following theorem (see [10]):

Theorem 2.15. Let F be an Easton function respecting every κ which isH(F(κ))-strong,
and assume GCH holds in the universe. There is a cofinality-preserving iteration P which
realises F such that whenever G is P-generic over V , we have:

Whenever in V , κ is H(F(κ))-strong and there is j ∶ V → M witnessing H(F(κ))-
strength of κ such that
(2.5) j(F)(κ) ≥ F(κ),
then κ remains measurable in V [G].

The proof is beyond the scope of this paper, but let us at least comment on the method
of proof. As we mentioned in Lemma 2.14, the manipulation of 2κ with κ measurable us-
ing the Cohen forcing and Woodin’s “surgery argument” requires us to use an extra forc-
ing denoted ̇R in the proof of Lemma 2.14. It seems quite hard to incorporate this extra
forcing at every relevant stage into a global result along the lines ofTheorem 2.15. Instead,
to prove Theorem 2.15 we use the generalised product-style α-Sacks forcing Sacks(α, β),
for an inaccessible α and an ordinal β > 0 (see [10] for details): P is a reverse Easton iter-
ation defined similarly as in Definition 2.4 with Add(γ, F(γ)) replaced by Sacks(γ, F(γ))
whenever γ is an inaccessible closure point of F.14 The use of Sacks forcing has the ad-
vantage that to lift an embedding, no extra forcing ̇R is required.

14 Since one mixes the α-Sacks forcing with the α+-Cohen forcing (and other Cohen forcings – but only the
stage α+ requires an argument), one needs to argue that they work well together: in particular, one can show
(see [10]) that Sacks(α, F(α)) forces that Add(α+, F(α+)) is still α+-distributive. In fact, this is true for any
α+-closed forcing in place of Add(α+, F(α+)).
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The property (2.5) is essential for lifting the embedding at κ, and captures the degree
of reflection which F needs to satisfy for preservation of measurability of κ. The proof
is relatively straightforward when F(κ) is regular, but is more involved when F(κ) is a
singular cardinal (the most difficult case is when F(κ) has cofinality > κ+ in V and is
singular in V , but is regular in M, where j ∶ V → M is an embedding witnessing (2.5)).

Note that the apparent lack of uniformity in the statement of the theorem (the condi-
tion (2.5)) is unavoidable as illustrated in Lemma 2.14. Also note that the use ofH(F(κ))-
strong cardinals is almost optimal, as mentioned above in the discussion of property (c).

Remark 2.16. We have not checked whether every measurable cardinal κ in V [G] is
measurable also in V , obtaining an analogue of Theorems 2.6 and 2.11, but we consider it
likely.

2.4 Ramsey, Woodin and supercompact cardinals

We shall more briefly review results for some other large cardinals, most notably Ram-
sey, Woodin and supercompact.

A Ramsey cardinal, see Definition 1.13, is large enough to imply V ≠ L, but it may not
be measurable (and its consistency strength is less than measurability). In the classifica-
tion following (2.4), Ramsey cardinals are in (R−) and (L). We will see below in Theorem
2.17 that indeed Ramsey cardinals have no reflection properties relevant for the contin-
uum function.

In terms of consistency,Woodin cardinals (seeDefinition 1.22) aremuch stronger than
measurable cardinals, being in principle inaccessible limits of H(λ)-strong cardinals in-
troduced above (for certain λ’s). However, a Woodin cardinal may not even be weakly
compact (while it is a Mahlo cardinal). Its classification is still (R−) and (L), as will be
apparent from Theorem 2.18.

The following theorem appears in [3] as Theorem 4.5:

Theorem 2.17. Let V satisfy GCH and let F be an Easton function respecting Ramsey
cardinals. Let A0 be the class of all Ramsey cardinals. Then in any generic extension V [G]
by PF , F is realised and the set of Ramsey cardinals contains A0.

We should note that the proof of Theorem 2.17 utilizes a characterisation of Ram-
seyness by means of elementary embeddings, to apply an appropriately tailored lifting
argument.

The following theorem appears in [2] as Theorem 1:

Theorem 2.18. Let V satisfy GCH and let F be an Easton function respecting Woodin
cardinals. Let A0 be the class of all Woodin cardinals. Then in any generic extension V [G]
by a certain cofinality preserving forcing P, F is realised and the set of Woodin cardinals
contains A0.

The forcing P in the statement of the theorem contains the α-Sacks forcing at the crit-
ical stages (regular closure points α of F), similarly as we discussed below Theorem 2.15.
The key lemma for the preservation of Woodiness is Lemma 14 in [2].

We now turn to supercompact cardinals. The first generalisation of the Easton theo-
rem for large cardinals actually appeared for the supercompact cardinals, see [17]. Since
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supercompact cardinals have reflection properties, it is not possible to realise every F and
preserve supercompact cardinals; Menas identified a property of F which is sufficient for
preservation of supercompact cardinals:

Definition 2.19. An Easton function F is said to be locally definable if the following
condition holds:

There is a sentence ψ and a formula φ(x, y) with two free variables such that ψ is true in
V and for all cardinals γ, if H(γ) ⊧ ψ, then F[γ] ⊆ γ and

(2.6) ∀α, β ∈ γ(F(α) = β ⇔ H(γ) ⊧ φ(α, β)).

The following is a theorem in section 18 of [17]:

Theorem 2.20. Let V satisfy GCH and let F be a locally definable Easton function re-
specting supercompact cardinals. Let A0 be the class of all supercompact cardinals. Then in
any generic extension V [G] by the forcing PF of Definition 2.4, F is realised and the set of
supercompact cardinals contains A0.

The theorem is proved using a “master condition” argument15 applied to the forcing,
whichmakes it possible to use Cohen forcing at closure points of F; compare with the dis-
cussion below Theorem 2.15. Theorem 2.20 was generalised also for the strong cardinals
(see Definition 2.13); see [10, Theorem 3.17].

Theorem2.21. LetV satisfyGCH and let F be a locally definable Easton function respect-
ing strong cardinals. LetA0 be the class of all strong cardinals. Then in any generic extension
V [G] by a certain cofinality-preserving forcing P, F is realised and the set of strong cardinals
contains A0.

The forcing P contains the α-Sacks forcing at regular closure points α of F.
Let us conclude this section by remarking that there are results similar to these the-

orems which are formulated for a λ-supercompact cardinal κ which is also H(ν)-strong
for some λ < ν; see [11, 4].

2.5 Open questions

Considering the variety of large cardinal concepts, it is no surprise that many of them
have not been studied from the point of their compatibility with patterns of the contin-
uum function. For instance the following cardinals have not been studied:16
– While strong compactness is close to supercompactness in the consistency strength,

the dropping of normality of the witnessing ultrafilter makes it less well-behaved. In
particular, a characterisation by means of an elementary embedding only gives the
following (compare with Definition 1.21):

15 Roughly, in order to lift an embedding j between transitive classes M and N , the pointwise image of a P-
generic filter g , j"g , is an element of N , generating a suitable j(P)-generic filter h over N containing j"g . j"g
is called a master condition. In crucial situations, j"g is usually too big to be in N ; a typical case where j"g
is in N is when j is a supercompact embedding. There is no master condition for arguments starting with
H(F(κ))-strong cardinals.

16 To our knowledge, no complete generalisation of the Easton theorem has been formulated yet.
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Definition 2.22. Let κ be an inaccessible cardinal and λ > κ a cardinal. κ is λ-
strongly compact if there is an elementary embedding j ∶ V → M with critical point κ
such that j(κ) > λ and for any X ⊆ M with |X| ≤ λ there is Y ∈ M, Y ⊇ X, such that
M ⊧ |Y| < j(κ).

These weaker properties of the embedding suggest a different lifting method – in-
stead of lifting an embedding, one can lift directly the ultrafilter (as in [13], albeit in a
different context).

– We say that κ is a Shelah cardinal if for every f ∶ κ → κ there is j ∶ V → M with critical
point κ such that Vj(f )(κ) ⊆ M. Very little has been published about this cardinal with
respect to the continuum function.

– Rank-to-rank embeddings (the hypotheses I3–I0). A partial result appeared in [8].
There are many other cardinals which can be studied, so our list is far from complete.

3. In the converse direction

In the whole paper, we studied the question of preserving large cardinals while ma-
nipulating the continuum function. As a curiosity, we show in this section that by ma-
nipulating the continuum function, it is possible to wipe out all large cardinals.

Theorem 3.1. Let M = Vκ , where κ is an inaccessible cardinal. Suppose I = {α <
κ | α is inaccessible} is a non-stationary subset of κ. Then there is a forcing P of size κ,
definable inH(κ+) such that inM[G], there are no inaccessible cardinals, for any P-generic
filter G over V .

Proof. Let C be a club disjoint from I, and let ⟨ci | i < κ⟩ be the increasing enumeration
of C. Define P to be a product of Cohen forcings with Easton support as follows: define
Qi = Add(c+i , ci+1) for 0 ≤ i < κ, and Q−1 = Add(ℵ0, c0). Set

P =
Easton

∏
−1<i<κ

Qi,

where the superscript “Easton” denotes the Easton support.
Let G be a P-generic filter over V . By definition of P, if μ < κ is a limit cardinal closed

under the continuum function in V [G], then μ ∈ C. Since C ∩ I = ∅, it implies that in
V [G] there are no inaccessible cardinals below κ.

Finally, since κ is still inaccessible in V [G], M[G] is a transitive model of set theory
without inaccessible cardinals as desired. �

Note that if M satisfies GCH, then the forcing P preserves cofinalities.
To destroy all inaccessible cardinals in M, it suffices to find a forcing which forces a

club disjoint from inaccessible cardinals. The idea comes from [7].

Theorem 3.2. Let M be as above. There is a forcing P of size κ which does not change
Vκ = M such that in V [G] there is a club C ⊆ κ disjoint from I, the set of inaccessibles
below κ.

Proof. Let conditions be functions from ordinals α < κ to 2 such that if β < κ is inacces-
sible, then {γ ∈ dom(p) ∩ β | p(γ) = 1} is bounded in β.
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The forcing is κ-distributive because it is κ-strategically closed. So Vκ is not changed,
and consequently all cardinals ≤ κ are preserved. Moreover since κ is inaccessible, P has
size κ, so all cardinals are preserved.

Clearly, if G is P-generic over V , then
A = lim{α < κ | (∃p ∈ G)(p(α) = 1)}

is a club disjoint from I. �

Remark 3.3. Note that the same proof can be rephrased as turning a Mahlo cardinal
into a non-Mahlo inaccessible cardinal.
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ABSTRACT
The paper reviews special Aronszajn trees, both at ω1 and κ+ for an uncountable
regular κ. It provides a comprehensive classification of the trees and discusses the
existence of these trees under different set-theoretical assumptions. The paper pro-
vides details and proofs for many folklore results which circulate (often without a
proper proof) in the literature.
Keywords: special Aronszajn trees

1. Introduction

A tree, which is now called Aronszajn, was first constructed by Nachman Aronszajn
and the construction can be found in [Kur35]. The constructed tree was actually a special
ω1-Aronszajn tree. The definition of special Aronszajn tree has several equivalent vari-
ants and in the literature can be found many generalizations of the definition of a special
Aronszajn tree. In this paper we focus on the question what are the relationships between
them and provide a basic classification.

1.1 Preliminaries

In this section, we provide a review of basic definitions and facts relating to trees.

Definition 1.1. We say that (T,<) is a tree if (T,<) is a partial order such that for each
t ∈ T , the set {s ∈ T|s < t} is wellordered by <.

Definition 1.2. We say that S ⊆ T is a subtree of (T,<) in the induced ordering < if
∀s ∈ S ∀t ∈ T(t < s → t ∈ S).

Definition 1.3. Let T be a tree
(i) If t ∈ T , then ht(t,T) = ot({s ∈ T|s < t}) is height of t in T ;
(ii) For each ordinal α, we define the α-th level of T as Tα = {t ∈ T|ht(t) = α};
(iii) The height of T , ht(T), is the least α such that Tα = ∅;
(iv) T � α = ⋃β<α Tβ is a subtree of T of height α.

Definition 1.4. For a regular κ ≥ ω, T is called a κ-tree if T has height κ, and |Tα| < κ
for each α < κ.
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Many κ-tree is isomorphic to a subtree of the full tree (<κκ, ⊂). More precisely, this is
the case whenever the κ-tree is normal. See the definition below.

Definition 1.5. A normal κ-tree is a tree T such that:
(i) ht(T) = κ;
(ii) |Tα| < κ, for every α < κ;
(iii) |T0| = 1;
(iv) If ht(s,T) = ht(t,T) is a limit ordinal, then s = t if and only if {r ∈ T|r < s} =

{r ∈ T|r < t}.

Note that the conditions (i) and (ii) ensure that a normal κ-tree is a κ-tree.

Fact 1.6. Let κ be a regular cardinal. Then every normal κ-tree is isomorphic to a subtree
T′ of the full tree (<κκ, ⊂).

If we consider a successor cardinal κ+ in the previous fact, then the levels of the κ+-tree
have size ≤κ. Hence we can strengthen the formulation of the previous fact for successor
cardinals as follows: Every normal κ+-tree is isomorphic to a subtree T′ of the full tree
(<κ+κ, ⊂).

Definition 1.7. Let T be a tree. We say that B is a branch if it is a maximal chain in T .

Definition 1.8. Let κ be a regular cardinal. We say that a κ-tree T is a κ-Aronszajn tree
if it has no branch of size κ. We denote the class of all Aronszajn trees at κ as A(κ).

By König’s Lemma, no ω-Aronszajn trees exist. On the other hand, by result of Aron-
szajn, there exists an ω1-Aronszajn tree. Moreover, if we assume GCH, then there exists
a κ+-Aronszajn tree for each regular cardinal κ, by a result of Specker [Spe49].

There are two common strengthenings of the notion of an Aronszajn tree. The first
one leads to the notion of a special Aronszajn tree, to which we dedicate the next section.
The second leads to the notion of a Suslin tree.

Definition 1.9. Let κ be a regular cardinal. We say that a κ-Aronszajn tree is Suslin, if
it has no antichain1 of size κ. We denote the class of all Suslin trees at κ as S(κ).

The notion of anω1-Suslin tree first appeared in connectionwith the Suslin problemof
the characterization of the real line. Actually, in [Kur35] Kurepa showed that the original
Suslin hypothesis (SH) can be formulated as the claim that there are no Suslin trees. For
more details about Suslin hypothesis see [Jec03].

2. Special Aronszajn trees atω1

2.1 Classification

In this section, we classify different types of special Aronszajn trees at ω1. Most of
the notions are standard, but dispersed through diverse papers, so we think it is useful to
provide a unified treatment here.

1 A ⊂ T is an antichain if for every t, s ∈ A, if t ≠ s, then there is no u ∈ T such that u ≥ t and u ≥ s.
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Definition 2.1. We say that an ω1-Aronszajn tree T is special if T is a union of count-
able many antichains. We denote the class of all special Aronszajn trees at ω1 asAsp(ω1).

Definition 2.2. Let κ be a regular cardinal, T be a κ-Aronszajn tree and P = ⟨P,<P⟩
be a partially ordered set. We say that T is P-embeddable if there is a function f ∶ T → P
such that s <T t → f (s) <P f (t). We denote the class of all P-embeddable trees at κ as
T(P)(κ).

Note that the previous definition can be generalized for arbitrary partially ordered set.

Definition 2.3. Let κ be a regular cardinal,R = ⟨R,<R⟩ and P = ⟨P,<P⟩ be a partially
ordered sets. We say that R is P-embeddable if there is a function f ∶ R → P such that
s <R t → f (s) <P f (t).

Fact 2.4. The following are equivalent for an ω1-Aronszajn tree T :
(i) T is special;
(ii) There is f ∶ T → ω such that if s, t are comparable in T , then f (s) ≠ f (t);
(iii) T isQ-embeddable, i.e. T ∈ T(Q)(ω1).
When we work with Q-embeddable Aronszajn trees it is natural to consider also R-

embeddable Aronszajn trees and ask what is the connection between them. The follow-
ing fact tells us how to characterise R-embeddable Aronszajn trees usingQ-embeddable
Aronszajn trees. It was first proved in [Bau70].

Fact 2.5. Let T be an ω1-tree. T is R-embeddable if and only if T∗ = ⋃α<ω1
Tα+1 is

Q-embeddable.

Now, we introduce the concept of an M-special Aronszajn tree.

Definition 2.6. We say that an ω1-Aronszajn tree T is M-special if T is isomorphic
to the subtree of {s ∈ <ω1ω|s is 1-1}. We denote the class of all M-special ω1-Aronszajn
trees as AM-sp(ω1).

We use the notation M-special to distinguish special Aronszajn trees defined by
Mitchell in [Mit72] from now more used Definition 2.1. Note that Mitchell’s definition
includes just normal trees in contrast to Definition 2.1. In this sense the notion of a spe-
cial tree is more general than M-special. However, if we consider just normal trees, then
every special normal tree can be represented by an M-special tree. The converse may not
hold in general, see Lemma 2.16.

Lemma 2.7. If T is a normal special ω1-Aronszajn tree, then T is M-special.

Proof. Fix for every α < ω1 a 1-1 function gα ∶ Tα → ω, and write T = ⋃n<ω An,
where An is an antichain for each n < ω.

We define by induction on α < ω1 a tree T′ and an isomorphism i ∶ T → T′, where
T′ is a subtree of {s ∈ <ω1(ω × ω)|s is 1-1}. The isomorphism i will be a union of partial
isomorphisms iα ∶ T � α → T′ � α.

Set T′
0 = {∅} and i1(r) = ∅, where r is the root of T . As we assume that T is normal,

i1 is an isomorphism between T � 1 and T′ � 1.
Suppose that we have constructed iβ ∶ T � β → T′ � β for each β < α. First, if α is

limit, set iα = ⋃β<α iβ and T′ � α = ⋃β<α T
′ � β.
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If α = γ + 1 and γ is a successor, then we define iα by extending iγ setting for each
s ∈ Tγ:

(2.1) iα(s) = iγ(t) ∪ {⟨γ, ⟨gγ(s), n⟩⟩},

where the node t is the immediate predecessor of s and s ∈ An. Let T′ � α = T′ �
γ ∪ T′

γ , where T′
γ = {iα(s)|s ∈ Tγ}. It is clear that each function in T′

γ is 1-1 since each
two comparable nodes must be in different antichains.

If α = γ + 1 and γ is limit, then we define iα by extending iγ setting for each s ∈ Tγ:

(2.2) iα(s) = ⋃{iγ(t)|t < s}.

By (iv) of Definition 1.5, iα is 1-1 and clearly it is also an isomorphism. Let T′ � α = T′ �
γ ∪ T′

γ , where T′
γ = {iα(s)|s ∈ Tγ}. Again it is obvious that each function in T′

γ is 1-1
since it is a union of 1-1 functions with gradually increasing domains.

At the end, set T′ = ⋃α<ω1
T′ � α and i = ⋃α<ω1

iα. It is easy to see that the tree T′

is isomorphic to a subtree of {s ∈ <ω1ω|s is 1-1} by any bijection between ω × ω and ω.
Hence T is M-special. �

Note that at limit steps we use just the assumption that the tree is normal. Hence we
can generalize this lemma toR-embeddable trees. Theproof of the implication from right
to left can be found in [Dev72].

Lemma 2.8. Let T be an ω1-Aronszajn tree. T is normal R-embeddable if and only if
T is M-special.

Proof. (⇒) Let T be a normal R-embeddable. Then T∗ = ⋃α<ω1
Tα+1 is Q-

embeddable and so T∗ = ⋃n<ω An where An is an antichain for each n. The rest of
the proof is the same as the proof of Lemma 2.7 since we used the antichains only in the
successor step.

(⇐) Let T be M-special. We define f ∶ T → R by setting

f (t) =
∞

∑
i=0

𝒳𝒳Rng(t)(i)
10i

,

where 𝒳𝒳X is the characteristic function of a set X ⊂ ω. Since every node of T is a 1-1
function from some ordinal α < ω1 to ω, if s < t then Rng(s) ⊂ Rng(t) and so there is
n < ω such that 0 = 𝒳𝒳Rng(s)(n) < 𝒳𝒳Rng(t)(n) = 1 and 𝒳𝒳Rng(s) � n = 𝒳𝒳Rng(t) � n. Hence
f (s) < f (t). �

By Fact 2.5, if the tree T is R-embeddable then T � S for S = {α + 1|α < ω1} is Q-
embeddable. So it is natural to introduce the concept of S-special for arbitrary unbounded
subset of S ⊆ ω1. The following definition is from [She98].

Definition 2.9. Let S be an unbounded subset of ω1. We say that an ω1-tree T is
S-special if T � S is Q-embeddable, where

T � S = {t ∈ T|ht(t,T) ∈ S},
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with the induced ordering. We say that an ω1-tree T is 𝒮𝒮-special if there is S, an un-
bounded subset of ω1, such that T is S-special. We denote the class of all 𝒮𝒮-special
ω1-Aronszajn trees as Au-sp(ω1).

The following fact from [DJ74] says that if we only consider S-special trees for closed
unbounded subsets S of ω1, we get nothing new.

Fact 2.10. Let C be a closed unbounded subset of ω1. If T is a C-special ω1-Aronszajn
tree, then T is special.

The following Fact 2.11, which can be found in [She98], says that if all Aronszajn trees
are S-special for some given unbounded subset of ω1, then all of them are in fact special.
As an easy corollary, we have by Fact 2.5 that if everyω1-Aronszajn tree isR-embeddable,
then every ω1-Aronszajn tree is Q-embeddable.

Fact 2.11. Let S be an unbounded subset of ω1. If every ω1-Aronszajn tree is S-special
then every ω1-Aronszajn tree is special. In particular, if every ω1-Aronszajn tree is R-
embeddable, then every ω1-Aronszajn tree isQ-embeddable.

Note that 𝒮𝒮-special Aronszajn trees, including special, R-embeddable, and M-special
Aronszajn trees, are not Suslin in the following strong sense: every uncountable subset
of such tree contains an uncountable antichain. This motivates the following definition.

Definition 2.12. We say that an ω1-tree T is non-Suslin if every uncountable subsetU
of T contains an uncountable antichain. We denote the class of all non-Suslin Aronszajn
trees at ω1 as ANS(ω1).

The name of non-Suslin trees is inspired by the fact that every non-Suslin tree is not
Suslin. On the other hand, every tree that is not non-Suslin has a Suslin subtree, as follows
from the next fact that can be found in [Han81].

Fact 2.13. Let T be an ω1-Aronszajn tree. If T is not non-Suslin, then T has a subtree
which is Suslin.

Lemma 2.14. Let T be an ω1-Aronszajn tree. If T is 𝒮𝒮-special, then T is non-Suslin.

Proof. Assume for contradiction that T is an 𝒮𝒮-specialω1-Aronszajn tree which is not
non-Suslin. By the previous fact T has a subtree T′ which is Suslin. Since T is 𝒮𝒮-special,
T′ is 𝒮𝒮-special, too. Hence there is an unbounded subset S of ω1 such that T′ � S =
⋃n<ω An, where An is an antichain for each n. By pigeon-hole principle, for some n < ω
the size of An must be greater than ω. This contradicts the fact that T′ is Suslin. �

To sum up, for general trees we obtain:

(2.3) Asp(ω1) = T(Q)(ω1) ⊆ T(R)(ω1) ⊆ Au-sp(ω1) ⊆ ANS(ω1).

If we consider only normal trees, we get:

(2.4) Asp(ω1) = T(Q)(ω1) ⊆ T(R)(ω1) = AM-sp(ω1) ⊆ Au-sp(ω1) ⊆ ANS(ω1).

In the next section, for each of these inclusions, we examine if there is a model in
which it is proper.
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2.2 Existence

The existence of special Aronszajn trees at ω1 can be proved in ZFC and by Baumgart-
ner’s theorem published in [BMR70] it is consistent with ZFC that every Aronszajn tree
at ω1 is special, so Asp(ω1) = T(R)(ω1) = Au-sp(ω1) = ANS(ω1) is consistent with ZFC.
On the other hand, consistently, each inclusion can be proper.

The following Fact 2.15 was first published in [Bau70]. It says that it is consistent that
there is an Aronszajn tree which is M-special but not special. As a corollary we obtain
that the first inclusion in (2.3) can be consistently proper.

Fact 2.15. Assume ♦. Then there is a non-special Aronszajn tree which is a subtree of
{s ∈ <ω1ω|s is 1-1}. In particular, there is an R-embeddable ω1-Aronszajn tree which is
not special.

Proof. This has been proved by Baumgartner (see [Dev72]). We have extended his
proof to obtain a more general result, see Theorem 3.27. �

The following lemma is a consequence of Fact 2.15 and it shows us that the second
inclusion in (2.3) can be consistently proper.

Lemma 2.16. Assume♦. Then there is anω1-Aronszajn tree, which is 𝒮𝒮-special and not
R-embeddable.

Proof. By Fact 2.15, assuming♦, there is anω1-Aronszajn treewhich isR-embeddable,
but not Q-embeddable. Let α < ω1 be a limit ordinal and let t ∈ Tα. For the chain C =
{s ∈ T|s < t} we add a new node tC such that tC < t and tC > s for all s ∈ C. Consider the
tree T′ which is created by adding such tC for every limit node t. Note that ⋃α<ω1

T′
α+1 =

T ⧵ T0. Now, T′ is not R-embeddable since ⋃α<ω1
T′
α+1 is not Q-embeddable. But T′ is

S-special for S = {α + 2|α < ω1} since T′ � S = ⋃α<ω1
Tα+1 ⧵ T1. �

The claim that the last inclusion in (2.3) can be consistently proper is a consequence
of the theorem published in [Sch14], which says that if ZFC is consistent, so is ZFC + SH2

+ there is an Aronszajn tree T at ω1 which is not 𝒮𝒮-special. If SH holds, then by Fact 2.13
every Aronszajn tree is non-Suslin. Therefore T is non-Suslin and it witnesses that ZFC
+ Au-sp(ω1) ≠ ANS(ω1) is consistent.

3. Special Aronszajn trees at larger κ

3.1 Generalisations ofQ

In this section we consider some common generalisations of Q at higher cardinals.
The following definitions ofQκ andQ∗

κ are taken from [Tod84]. In addition, we introduce
our definition of a generalisation of the real line for higher cardinals because we want to
generalize the concept of an R-embeddable tree (see Definition 2.2).

2 Suslin Hypothesis
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Definition 3.1. Let κ be a regular cardinal. Then
Q∗

κ =({f ∈ ωκ| {n < ω|f (n) ≠ 0} is finite} ⧵ {0},<lex);(3.1)

Qκ =({f ∈ κ2| |{α < κ|f (α) ≠ 0}| < κ} ⧵ {0},<lex);(3.2)

Rκ =({f ∈ κ2|(¬∃α < κ)[f (α) = 0 and (∀β > α)(f (β) = 1)]} ⧵ {0, 1},<lex);(3.3)

where <lex is the lexicographical ordering, 0 (1) denotes the sequence of zeros (ones)
of length ω in (3.1) and of length κ in (3.2) and (3.3).

Note that in the definition ofRκ , we allow all 1’s on a tail, but restrict this configuration
by demanding that in this case there is no greatest α with f (α) = 0.3

Remark 3.2. Note that Qω ≅ Q ≅ Q∗
ω. On the other hand, for κ > ω, Qκ ≇ Q∗

κ ,
even if |Qκ| = κ. This holds, because Q∗

κ does not contain any decreasing sequence of
uncountable length. However, in Qκ there are decreasing sequences of length κ.

In this paper we work mainly with Qκ because it has some nice properties: in par-
ticular, one can generalize Kurepa’s Theorem for Qκ and prove Lemma 3.4 which is very
useful and plays the key role in proving Lemma 3.13. On the other hand, the main advan-
tage of Q∗

κ is that it always has size κ. When we work with Qκ , we need to assume that
κ<κ = κ to control its size.

The following easy lemma tells us that Qκ has the properties which we want from a
generalisation of Q, with the exception that it does not have to have size κ. The proof is
left as an exercise.

Lemma 3.3. The orderingQκ is linear, dense, without endpoints and |Qκ| = κ<κ .
There is an asymmetry in Qκ between decreasing and increasing sequences:
Lemma 3.4. Assume κ > ω is regular.
(i) LetA = ⟨fα|α < λ⟩ be a strictly decreasing sequence inQκ , where λ is a limit ordinal

such that ω ≤ λ < κ. Then A does not have an infimum inQκ .
(ii) Let B = ⟨gα|α < λ⟩ be a strictly increasing sequence inQκ where λ is a limit ordinal

such that ω ≤ λ < κ. Then B has a supremum inQκ .
Proof. Ad (i). Let A = ⟨fα|α < λ⟩ be given. Assume for contradiction that there is the

infimum f ∈ Qκ of A. Since f ∈ Qκ , there is β0 < κ such that for each β ≥ β0 f (β) = 0.
Since λ < κ and κ is regular, there is γ0 < κ such that for each γ ≥ γ0 and for each α < λ
fα(γ) = 0. Let δ = max{β0, γ0}. We define f ∗ = f � δ∪{⟨δ, 1⟩}∪{⟨β, 0⟩ |β > δ}. Clearly,
f ∗ > f . Since f < fα for every α < λ and since δ = max{β0, γ0}, f ∗ < fα for every α < λ.
This is a contradiction because we assume that f is the infimum of A.

Ad (ii). Let B = ⟨gα|α < λ⟩ be given. We define supremum g by induction on β < κ.
For β = 0. Set

g(0) = {1 if ∃α < λ(gα(0) = 1);
0 otherwise.

3 If f ∈ κ2 does not satisfy (3.3) and α is the greatest position with 0, then we can define g ∈ Rκ which is the
immediate successor of f in the lexicographical order: define g exactly as f below α, and set g(β) = 1 for all
β ≥ α. To prohibit this situation (which violates density of the ordering), we choose to disallow such f ’s in
(3.3). If there is no greatest α where f (α) = 0, this problem does not arise.
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Assume that g � β is defined, then we define g(β) as follows:

g(β) = {1 if ∃α < λ such that gα(β) = 1 and gα � (β + 1) > g � β ∪ {⟨β, 0⟩};
0 otherwise.

First note that g is in Qκ since κ is regular and λ < κ.
Now, we show that g is the supremum of B. It is obvious that gα < g for every α < λ.

Hence it is enough to show that g is the least upper bound of B. Let h < g be given. Then
there is β0 < κ such that h � β0 = g � β0 and 0 = h(β0) < g(β0) = 1. By definition of g
there is α such that gα � (β0 + 1) > g � β0 ∪ ⟨β0, 0⟩. As h � β0 = g � β0 and h(β0) = 0,
g � β0 ∪ ⟨β0, 0⟩ = h � (β0 + 1) and so gα � (β0 + 1) > h � (β0 + 1). Therefore gα > h. �

Note that it was important in (i) of the previous lemma that λ is a limit ordinal < κ.
One can easily find decreasing sequences inQκ of length κ which do have the infimum.4

Now, we present the generalisation of Kurepa’s Theorem for Qκ :

Theorem 3.5. (Generalised Kurepa’s Theorem) Assume κ<κ = κ. Let (E,<) be a par-
tially ordered set. Then the following are equivalent:

(i) E is embeddable inQκ ;
(ii) E is the union of at most κ-many antichains.

Proof. (i) ⇒ (ii) Let f be the embedding. Let {qα|α < κ} be an enumeration of Qκ .
We define Aα = f −1(qα) for each qα ∈ Rng(f ). Obviously, each Aα is an antichain since
f is an embedding.

(ii) ⇒ (i) We assume that ⋃α<κ Aα = E, where each Aα is an antichain. Moreover,
without loss of generality, we may assume that for each β, α < κ, Aα ∩ Aβ = ∅. Let
f ∶ E → κ be a function such thatAα = f −1(α). For x ∈ E define g(x) so that g(x)(α) = 1
if and only if α ≤ f (x) and {y ∈ E|y ≤ x} ∩ Aα ≠ ∅.

Notice that g(x) is in Qκ because g(x)(α) = 1 implies that α ≤ f (x), where f (x) ∈ κ.
Now, we check that g is an embedding. Assume that x < y are in E and x ∈ Aα, y ∈ Aβ

for some β ≠ α. We distinguish two cases.
First suppose that α < β. Then g(x)(α) = 1 and also g(y)(α) = 1 since x < y and

x ∈ Aα. And for all γ < α if g(x)(γ) = 1 then g(y)(γ) = 1 and so g(x) � α ≤lex g(y) � α.
If g(x) � α <lex g(y) � α, then g(x) < g(y) and we are finished. If g(x) � α = g(y) � α,
then we can continue as follows: for all γ > α it holds that g(x)(γ) = 0 since γ > f (x).
Hence g(x)(β) = 0 and g(y)(β) = 1; therefore g(x) < g(y).

Next suppose that β < α. Again for all γ < β, if g(x)(γ) = 1 then g(y)(γ) = 1 and
so g(x) � β ≤lex g(y) � β. Now, we show that g(x)(β) = 0 and g(y)(β) = 1. Assume
for contradiction that g(x)(β) = 1. Then by definition of the function g , we know there
exists z ∈ Aβ and z ≤ x. Hence z < y and this is a contradiction since there are two
comparable elements in Aβ. By the definition of g , g(y)(β) = 1 and so g(x) < g(y). �

Remark 3.6. Note that the assumption κ<κ = κ is necessary just in the proof of (i) ⇒
(ii).

4 Compare withQ: some infinite decreasing sequences have an infimum; since there is no limit ordinal below
ω, the analogue of (i) of the previous Lemma does not appear in Q.
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Remark 3.7. We cannot prove Kurepa’s Theorem forQ∗
κ , for κ > ω a regular cardinal,

since it does not contain strictly decreasing sequence of uncountable length. Consider
the ordinal κ with reverse ordering <∗, i.e. α <∗ β that α <∗ β if and only if β ∈ α for α,
β ∈ κ. Then κ is a union of κ-many antichains and cannot be embedded to Q∗

κ .

Partials orders from Theorem 3.5 have another useful characterisation. The proof of
the following lemma is easy and it is left as an exercise for the reader.

Lemma 3.8. Let κ be regular and let (E,<) be a partially ordered set. Then the following
are equivalent:

(i) E is the union of at most κ-many antichains;
(ii) there is f ∶ E → κ such that if s, t are comparable in E, then f (s) ≠ f (t).

Now, we focus on the partial order Rκ . We show that it has similar properties as R.

Lemma 3.9. The partial order Rκ is
(i) linear, without endpoints;
(ii) Qκ is dense in Rκ ;
(iii) Dedekind complete.

Proof. It is easy to verify that Rκ satisfies (i).
Ad (ii). Let f <Rκ

g in Rκ be given. Let α0 be the least ordinal such that 0 = f (α0) <
g(α0) = 1. By definition of Rκ , there is the least β0 > α0 such that f (β0) = 0. Let
h = f � β0 ∪ {⟨β0, 1⟩} ∪ {⟨γ, 0⟩ |γ > β0}. It is easy to see that h ∈ Qκ and f <Rκ

h <Rκ
g .

Ad (iii). It is enough to show that every increasing sequence with upper bound has the
supremum. First note that each increasing sequence in Rκ has cardinality at most κ<κ
sinceQκ is dense inRκ as we proved in the previous paragraph. Let A = ⟨fα ∈ Rκ|α < λ⟩
for some ordinal λ ≤ κ<κ be given and let f ∈ Rκ be the upper bound of A. Let FC be a
choice function from 𝒫𝒫(Qκ) to Qκ . We define the sequence AQ in Qκ as follows:

(3.4) AQ = ⟨gα ∈ Qκ|gα = FC({q ∈ Qκ|fα < q < fα+1}) and α < λ⟩ .

We show that AQκ
has the supremum g in R and that g is also the supremum of A in Rκ .

We define a function g∗ ∶ κ → 2 by induction on β < κ.
For β = 0. Set

g∗(0) = {1 if ∃α < λ(gα(0) = 1);
0 otherwise.

Let g∗ � β be defined, then we define g∗(β) as follows:

g∗(β) = {1 if ∃α < λ such that gα(β) = 1 and gα � (β + 1) > g∗ � β ∪ {⟨β, 0⟩};
0 otherwise.

Note that g∗ may not be inRκ , but it holds that g∗ ≠ {⟨α, 1⟩ |α < κ} since the sequence
has an upper bound in Rκ .

Now, we need to show that g∗ is the supremum of AQ in (2κ,<lex). However, the
proof of this is the same as the proof of Lemma 3.4 (ii). Note that in the Lemma 3.4 (ii)
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we used the assumption that the sequence has length less than κ just for showing that the
supremum is in Qκ .

As we mentioned earlier, g∗ may not be in Rκ , but note that g∗ ≠ {⟨α, 1⟩ |α < κ}. If
g∗ is not in Rκ , there is β0 < κ such that g∗(β0) = 0 and g∗(β) = 1 for every β > β0.
Let g = g∗ � β0 ∪ {⟨β0, 1⟩} ∪ {⟨β, 0⟩ |β > β0}. Clearly g ∈ Rκ and there is no function
between g∗ and g in 2κ . Now we define g ∈ Rκ by

g = {g∗ if g∗ ∈ Rκ;
g otherwise.

It is obvious that g ∈ Rκ and since g∗ is the supremumofAQκ
in 2κ , g is the supremum

of AQκ
in Rκ .

To finish the proof of the theorem, it suffices to show that g is also the supremum of
A. The function g is clearly the upper bound of A. Now, we show that g is the least upper
bound. Let h < g . Since g is the supremum of AQκ

, there is q ∈ AQκ
, such that h < q. But

q < r for some r ∈ A by the definition of AQκ
. Hence h < r. �

3.2 Classification

In the previous section we have built the foundations for the investigation of spe-
cial κ+-Aronszajn trees for any regular κ. We introduced the concept of special, R-
embeddable,M-special and 𝒮𝒮-specialω1-Aronszajn trees. Now, we generalize these con-
cepts to higher Aronszajn trees, which are in the center of our interest. When we talk
about an Aronszajn tree in this section, we mean a κ+-Aronszajn tree for some regular
cardinal κ > ω.

Definition 3.10. Let κ be a cardinal. We say that κ+-Aronszajn tree T is special if T is
a union of κ-many antichains. We denote the class of all special Aronszajn trees at κ+ as
Asp(κ+).

As in the previous section, the concept of a special Aronszajn tree has more equivalent
definitions. However, we need to be careful when we talk aboutQκ-embeddability, since
this partial order in general does not have to have size κ.

Lemma 3.11. Let κ be regular. The following are equivalent for a κ+-Aronszajn tree T :
(i) T is special;
(ii) There is f ∶ T → κ such that if s, t are comparable in T , then f (s) ≠ f (t).
Proof. This is a direct consequence of Lemma 3.8. �

Lemma 3.12. Assume κ<κ = κ. Then κ+-Aronszajn tree T is special if and only if T is
Qκ-embeddable.

Proof. It follows from Theorem 3.5. �

Again as in the previous section, we can characteriseRκ-embeddable Aronszajn trees
using Qκ-embeddable Aronszajn trees. This is our generalisation of Fact 2.5.

Theorem 3.13. Assume κ<κ = κ. Let T be an κ+-tree. T is Rκ-embeddable if and only
if T∗ = ⋃α<κ+ Tα+1 isQκ-embeddable.



83

Proof. (⇒) Let T be Rκ-embeddable and T∗ = ⋃α<κ+ Tα+1. Let f be the embedding,
t ∈ T∗ and let s ∈ T be the immediate predecessor of t. We define f ′ ∶ T∗ → Qκ as
follows: f ′(t) = q where q ∈ Qκ such that f (s) < q < f (t).

(⇐) Let T∗ = ⋃α<κ+ Tα+1 be Qκ-embeddable and let f be the embedding.
We first define a function g ∶ Qκ → Qκ × Qκ which will “replace” every q ∈ Qκ with

an open interval (g(q)1, g(q)2),5 while preserving the ordering. More precisely, we will
define g by induction on κ and ensure it satisfies the following for all q < q′ in Qκ :

(3.5) g(q)2 < g(q′)1.

Enumerate Qκ as {qβ|β < κ}. We will construct by induction on α < κ embeddings
gα ∶ {qβ|β < α} → Qκ × Qκ which will be used to define the final function g .

As we will see below, at the successor step, we define gα+1 as an extension of gα to qα.
Suppose gα+1(qα) = ⟨q, q′⟩ for some q < q′ in Qκ . In addition to choosing q, q′, fix also
two elements a(qα) < b(qα) in the interval (q, q′) and two sequences as follows: a strictly
increasing sequence of elements in (q, q′) of length κ converging to a(qα) and a strictly
decreasing sequence of elements in (q, q′) of length κ converging to b(qα). We denote
these sequences ⟨a(qα)i|i < κ⟩ and ⟨b(qα)i|i < κ⟩, respectively.

Now we provide an inductive definition of the functions gα, α < κ:
Set g0 = ∅.
Let α be a limit ordinal. Define

gα = {⟨qβ, ⟨a(qβ)α+1, b(qβ)α+1⟩⟩|β < α}.

The idea behind this definition is to take the intervals defined in the previous stages of the
construction and “shrink” them to get more space. The shrinking of the intervals makes
sure that the construction can continue on the successor steps.

At α + 1, define gα+1 by

gα+1 = gα ∪ {⟨qα, ⟨q, q′⟩⟩},

for some suitable interval (q, q′), i.e. for all s < s′ in the domain of gα+1, we should have
gα+1(s)2 < gα+1(s′)1.6

When all functions gα, α < κ, have been constructed, set

g = {⟨qα, ⟨a(qα), b(qα)⟩⟩ |α < κ}.

By the construction, it follows that g is as required.
Now we can finish the proof of the theorem. Define a function i ∶ Qκ → Qκ by

i(q) = r, where r is some element of the open interval (g(q)1, g(q)2). We define an
embedding f ′ ∶ T → Rκ as follows:

f ′(t) = {
i(f (t)) if t ∈ Tα+1 for α < κ+;
sup{i(f (s))|s < t and s ∈ Tβ+1 and β < α} otherwise.

5 g(q)1 denotes the left coordinate and g(q)2 the right coordinate of the pair g(g).
6 When defining gα+1, we need to ensure that we can map qα into an interval which is disjoint from the

intervals gα(β), β < α, while respecting the ordering. Without the shrinking at the limit stages of the
construction, the intervals might converge in a way which prevents the definition of gα+1(qα).



84

Now we need to check that the function f ′ is the embedding of T to R. If s < t and s,
t ∈ T∗, then it is easy to see that f ′(s) < f ′(t) because i is order-preserving. If t ∈ Tα
for α limit, then f ′(s) < f ′(t) since f ′(t) is the supremum. The only interesting case is if
s ∈ Tα for α limit and t ∈ Tα+1. Then we need to show

(3.6) f ′(t) = i(f (t)) > sup{i(f (r))|r < s and r ∈ Tβ+1 and β < α} = f ′(s).

This follows from the construction of g . For every r < s it holds that i(f (r)) < q < i(f (t))
where q = g(f (t))1. Hence

(3.7) f ′(s) = sup{i(f (r))|r < s and r ∈ Tβ+1 and β < α} ≤ q < i(f (t)) = f ′(t).
�

Definition 3.14. Let κ be a cardinal. We say that κ+-Aronszajn tree T is M-special if
T is isomorphic to a subtree of {s ∈ <κ+κ|s is 1-1}

The following lemma is a generalisation of Lemma 2.7, hence we left the proof as an
exercise.

Lemma 3.15. Let κ be a regular cardinal. If T is a normal special κ+-Aronszajn tree
then T is M-special.

As in the case forω1, at the limit stepwe use just the assumption that the tree is normal.
Hence we can generalize this lemma to the following lemma. Note that for this we do not
need the assumption κ<κ = κ since we use that the tree ⋃α<κ+ Tα+1 is special instead of
Qκ-embeddable. We explicitly state this lemma here so it is clear that M-special trees are
exactly those trees that are normal and whose successor levels form a special tree, as was
the case at ω1.

Lemma 3.16. Let κ be a regular cardinal. Let T be a normal κ+-Aronszajn tree. Then
T∗ = ⋃α<κ+ Tα+1 is special if and only if T is M-special.

Proof. (⇒) Let T∗ = ⋃α<κ+ Tα+1 be special. Then T∗ = ⋃ξ<κ Aξ where Aξ is an
antichain for each ξ < κ. The rest of the proof is the same as the proof of Lemma 3.15.

(⇐) Let T be an M-special tree. Then T is isomorphic to a subtree T′ of
{s ∈ <κ+κ|s is 1-1} via i. We define f ∶ T∗ → κ by setting f (t) = i(t)(α) for
ht(t,T) = α + 1. Let s < t ∈ T∗. Then ht(s,T) = β + 1 < α + 1 = ht(t,T). Since
i(s) ⊂ i(t), i(s)(β) = i(t)(β). As i(t) is 1-1, i(t)(β) ≠ i(t)(α). Therefore f (s) ≠ f (t).

�

On the other hand, generalisation of Lemma 2.8 requires the additional assumption
that κ<κ = κ since we need to use Generalised Kurepa’s Theorem.

Lemma 3.17. Assume κ<κ = κ. Let T be a κ+-Aronszajn tree. T is a normal Rκ-
embeddable tree if and only if T is M-special.

Proof. It follows by Theorem 3.13 and Lemmas 3.12 and 3.16. �

Unlike special ω1-Aronszajn trees, it is not provable in ZFC that special κ-Aronszajn
trees exist for κ > ω1. Hence we are also interested in the question how the existence
of one kind of special Aronszajn trees influences the existence of other kinds of special
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Aronszajn trees. The following lemma claims that if there are no M-special Aronszajn
trees then there are no special Aronszajn trees at all.

Lemma 3.18. Let κ be a regular cardinal. If there exists a special κ+-Aronszajn tree,
then there exists an M-special Aronszajn tree.

Proof. Let T be a special κ+-Aronszajn tree. We first add one root r such that r < t for
each t ∈ T0. Now we wish to guarantee the condition (iv) of Definition 1.5. Let α < κ+
be a limit ordinal and let C be a cofinal branch in T � α such that there exists node t ∈ T
greater than all nodes c ∈ C. Then we add one extra node tC to the limit level α such that
tC > c for all c ∈ C and tC < t for all t > C, where t > C means t > c for all c ∈ C.

Since for every chain we add one extra node to the limit level, this new tree satisfies
(iv). Denote this tree T′. This tree is normal and T = ⋃α<κ+ T

′
α+1. By Lemma 3.16 the

tree T′ is M-special. �

As in previous section it makes sense to introduce the concept of 𝒮𝒮-special Aronszajn
trees.

Definition 3.19. Let κ be a regular cardinal and S be an unbounded subset of κ+. We
say that the κ+-tree T is S-special if T � S is special, where T � S = {t ∈ T|ht(t,T) ∈ S}
with the induced ordering. We say that a κ+-treeT is 𝒮𝒮-special if there is S, an unbounded
subset of κ+, such that T is S-special. We denote the class of all 𝒮𝒮-special κ+-Aronszajn
trees as Au-sp(κ+).

The proofs of the following lemmas are direct generalisations of proofs of Facts 2.10
and 2.11.

Lemma 3.20. Let C be a closed unbounded subset of κ+, where κ is a regular cardinal.
If T is a C-special κ+-Aronszajn tree, then T is special.

Proof. Let T be a C-special κ+-Aronszajn tree. Then T � C = ⋃ν<κ Aν , where eachAν
is an antichain. Let {aνα|α < κ+} be an enumeration ofAν for each ν < κ. Let {cα|α < κ+}
be the monotone enumeration of C. For α < κ+ and for x ∈ Tcα , we define Sx = {y ∈ T �
cα+1|x <T y}. Since each Sx has size less than κ+, let {sμ(x)|μ < κ} be an enumeration of
Sx . Set

(3.8) Aν,μ = {sμ(aνα)|α < κ+}.

Clearly, Aν,μ is an antichain of T for each ν, μ < κ. Since C is closed unbounded,
T = ⋃ν<κ Aν ∪ ⋃ν,μ<κ Aν,μ. Hence T is special. �

Lemma 3.21. Let κ be a regular cardinal and S be an unbounded subset of κ+. If every
κ+-Aronszajn tree is S-special then every κ+-Aronszajn tree is special.

Proof. Let S = {αμ|μ < κ+} be an unbounded subset of κ+ and T be a S-special κ+
Aronszajn tree. We define a new tree

(3.9) T′ = {⟨t, β⟩ |t ∈ T and β < αht(t,T) and ∀s < t(αht(s,T) < β)}.

The tree T′ is ordered by <T′ as follows: ⟨t, β⟩ <T′ ⟨s, γ⟩ if and only if t < s or (t = s
and β < γ). It is obvious that T satisfies our definition of Aronszajn tree. Hence T′ is



86

S-special, i.e. T′ � S is special. Since T is isomorphic to T′ � S = {⟨t, αht(t,T)⟩|t ∈ T}, T
is special. �

Again, note that 𝒮𝒮-special κ+-Aronszajn trees are not Suslin in a strong sense. This
means that every subset of size κ+ of such tree contains an antichain of size κ+. Hence we
can generalize Definition 2.12 and Lemma 2.14.

Definition 3.22. Let κ be a regular cardinal and T be a κ+-Aronszajn tree. We say that
T is non-Suslin if every subsetU of T , which has size κ+, contains an antichain of size κ+.
We denote the class of all non-Suslin Aronszajn trees at κ+ as ANS(κ+).

The proof of following lemma is a direct generalisation of proof of Fact 2.13.

Lemma 3.23. Let κ be a regular cardinal and T be a κ+-Aronszajn tree. If T is not
non-Suslin, then T has a subtree which is Suslin.

Proof. Let T be a κ+-Aronszajn tree, which is not non-Suslin. Then there is a subset
X of T such that |X| = κ+ and X does not contain antichain of size κ+. We define T′ =
{s ∈ T|∃t ∈ X(s < t)}. It is easy to verify that T′ is Suslin. �

The proof of following lemma is a direct generalisation of proof of Lemma 2.14.

Lemma3.24. Let κ be a regular cardinal andT be a κ+-Aronszajn tree. IfT is𝒮𝒮-special,
then T is non-Suslin.

The following theorem is only the summary of what we have showed about the rela-
tive existence of different kinds of special Aronszajn trees. It tells us that the weak tree
property7 at κ+ is equivalent to the claim that there are no M-special κ+-Aronszajn trees
and also to the claim that there are no 𝒮𝒮-special κ+-Aronszajn trees.

Theorem 3.25. Let κ be a regular. The following are equivalent
(i) Asp(κ+) = ∅;
(ii) AM(κ+) = ∅;
(iii) Au−sp(κ+) = ∅.

Proof. Ad (i) ⇔ (ii). The claim from left to right follows from Lemma 3.16 and the
converse follows from Lemma 3.18.

Ad (i) ⇔ (iii). This follows from the definition of 𝒮𝒮-special κ+-Aronszajn tree. �

To sum up:

(3.10) Asp(κ+) ⊆ Au−sp(κ+) ⊆ ANS(κ+) and AM(κ+) ⊆ Au−sp(κ+).

If moreover we only consider normal trees and assume that κ<κ = κ, we get:

(3.11) Asp(κ+) = T(Qκ)(κ+) ⊆ T(Rκ)(κ+) = AM-sp(κ+) ⊆ Au-sp(κ+) ⊆ ANS(κ+).

7 We say that a cardinal κ+ has the weak tree property, if there are no special κ+-Aronszajn trees.
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3.3 Existence

We are interested in special Aronszajn trees at successors of regular cardinals. While
the existence of a special ω1-Aronszajn tree can be proved in ZFC, at higher cardinals
we need some additional assumption, for example κ<κ = κ or weak square principle.
The first one was used in construction by Specker in [Spe49] and the second one in the
construction by Jensen in [Jen72]. On the other hand, it is possible to find a model with
no special κ+-Aronszajn tree where κ > ω is regular, but this requires much stronger
assumption. Throughout this section we assume that κ is a regular cardinal and κ > ω.

Definition 3.26. Eκ+κ = {α < κ+|cf (α) = κ}

This theorem is our generalisation of Fact 2.15. As a corollary we obtain that the first
inclusion in (3.10) can be consistently proper.

Theorem3.27. Assume κ<κ = κ and♦κ+(Eκ+κ ). Then there is anM-special κ+-Aronszajn
tree, which is not special.

Proof. By ♦κ+(Eκ+κ ) there is a sequence ⟨fα|α ∈ Eκ+κ ⟩ such that fα is a function from α
to α and for any function f ∶ κ+ → κ+ the set {α ∈ Eκ+κ |fα = f � α} is stationary in κ+.
We fix this sequence for the rest of the proof.

We construct the tree T and the function π ∶ T → κ+, which will code the tree in κ+,
by induction on α < κ+. For each α < κ+ we require the following conditions:

(T1) If s ∈ T � α then |κ ⧵ Rng(s)| = κ.
(T2) If s ∈ T � α and x ∈ [κ ⧵ Rng(s)]<κ then there is s′ ⊇ s on each higher level of

T � α such that Rng(s′) ∩ x = ∅.
(π0) πα is a 1-1 map from T � α to κ+ such that s ⊆ t → πα(s) < πα(t) and for β < α,

πβ ⊆ πα.
Let T0 = {∅} and π1 is an arbitrary function from T � 1 = T0 to κ+. It is clear that T0

satisfies both conditions and π1 satisfies (π0).
Let α = β+1. Suppose T � (β+1) and πβ+1 are defined and they satisfy the conditions

mentioned above. We want to construct level Tα. For each s ∈ Tβ we add all one-point
extensions s ∪ {⟨α, ν⟩} of s such that ν ∈ κ ⧵ Rng(s). This is possible by (T1), which
guarantees the existence of κ-many such extensions. Since we add all such extension of s,
for each x ∈ [κ⧵Rng(s)]<κ we can always find t ∈ Tα such that s ⊆ t and x∩Rng(s) = ∅;
therefore T � (α+ 1) satisfies (T2). As T � (β+ 1) satisfies (T1), T � (α+ 1) satisfies (T1),
too. To obtain πα+1, we extend πα arbitrarily such that it satisfies the condition (π0).

Let α be limit. For each β < α, suppose T � β and πβ are defined and they satisfy the
conditions mentioned above. We need to distinguish two cases. First, if α has cofinality
less than κ then we add all possible sequences. We can do that since κ<κ = κ.

Second, ifα has cofinality κ then letT′
α = ⋃β<α Tβ andπ∗

α = ⋃β<α πβ. We construct for
each s ∈ T′

α and x ∈ [κ ⧵ Rng(s)]<κ node sx above s of height α such that x ∩ Rng(s) = ∅.
Let us fix for the rest of the proof a bijection g from κ toQκ . Again, we need to distinguish
two cases. First, if fα ∘ g embeds π∗

α
′′T′

α to Qκ and Dom(fα) = π∗
α

′′T′
α, then set

(3.12) Xα = {(s, x)|s ∈ T′
α & x ∈ [κ]<κ & Rng(s) ∩ x = ∅} .
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For (s, x), (t, y) in Xα, we define (s, x) ≤α (t, y) if and only if s ⊆ t and x ⊆ y. For
each q ∈ Qκ , set

Δα
q = {(s, x) ∈ Xα|g(fα(π∗

α(s))) ≥Q q or

(∀(t, y) ∈ Xα)((t, y) ≥α (s, x) → g(fα(π∗
α(t))) <Qκ

q)} .(3.13)

It is easy to see that Δα
q is cofinal in Xα.

Let s ∈ T′
α and x ∈ [κ ⧵ Rng(s)]<κ be given. First we fix an increasing sequence

⟨αγ|γ < κ⟩ with limit α and α0 = length(s). By induction we construct an increasing
sequence ⟨(sγ, xγ)Δα

g(γ)|β < κ⟩ with length(sγ) ≥ αγ for all γ < κ.
Let s′0 = s and x′

0 = x. By definition of Xα, (s′0, x′
0) is in Xα and as Δα

g(0) is cofinal in Xα,
we can find (s0, x0) ≥α (s′0, x′

0) in Δα
g(0).

If γ < κ is a successor ordinal γ = β + 1 we can proceed as follows. Assume (sβ, xβ) is
defined. By (T1) there is νβ ∈ κ⧵(Rng(sβ)∪xβ). Let x′

β+1 = xβ∪{νβ}. By (T2)we can find
s′β+1 ∈ T′

α such that s′β+1 ⊇ sβ, length(s′β+1) ≥ αβ+1 and Rng(s′β+1)∩x′
β = ∅. By definition

ofXα, (s′β, x′
β) is inXα and asΔα

g(β) is cofinal inXα, we can find (sβ+1, xβ+1) ≥α (s′β+1, x′
β+1)

in Δα
g(β+1).

Let γ < κ be limit. Since γ < κ we can take s′′γ = ⋃β<γ sβ and x′
γ = ⋃β<γ xβ. As κ is

regular, |x′
γ| < κ. Note that Rng(s′′γ ) ∩ x′

γ = ∅, but length(s′′γ ) does not have to be greater
or equal to αγ. However, by (T2) there exists s′γ ⊇ s′′γ such that Rng(s′γ) ∩ x′

γ = ∅ and
length(s′γ) ≥ αγ. By definition of Xα, (s′γ, x′

γ) is in Xα and as Δα
g(γ) is cofinal in Xα, we can

find (sγ, xγ) ≥α (s′γ, x′
γ) in Δα

g(γ).
In the other case, if fα ∘ g does not embed π∗

α
′′T′

α to Qκ , then we proceed similar as
before. Let s ∈ T′

α, x ∈ [κ ⧵ Rng(s)]<κ and ⟨αγ|γ < κ⟩ be cofinal in α with α0 = length(s).
By induction we construct an increasing sequence ⟨(sγ, xγ)|β < κ⟩ with length(sγ) ≥ αγ
for all γ < κ.

Let s0 = s and x0 = x.
If γ < κ is a successor ordinal γ = β + 1 we can proceed as follows. Assume (sβ, xβ) is

defined. By (T1) there is νβ ∈ κ ⧵ (Rng(s) ∪ xβ). Let xβ+1 = xβ ∪ {νβ}. By (T2) we can
find sβ+1 ∈ T′

α such that sβ+1 ⊇ sβ, length(sβ+1) ≥ αβ+1 and Rng(sβ+1) ∩ xβ+1 = ∅.
Let γ < κ be limit. Since the size of γ is less than κ, we can take s′γ = ⋃β<γ sβ and

xγ = ⋃β<γ xβ. As κ is regular, |xγ| < κ. Note that Rng(s′γ) ∩ xγ = ∅, but length(s′γ)
does not have to be greater or equal to αγ. However by (T2) there exist sγ ⊇ s′γ such that
Rng(sγ) ∩ xγ = ∅ and length(sγ) ≥ αγ.

Let sx = ⋃γ<κ sγ. We define the level Tα = {sx|s ∈ T′
α and x ∈ [κ ⧵ Rng(s)]<κ}. It is

easy to verify that T � (α + 1) = T′
α ∪ Tα satisfies the condition (T1) and (T2). Again,

we can extend π∗
α to πα+1 on T � (α + 1) arbitrarily such that it satisfies the condition

(π0).
Finally, set T = ⋃α<κ+ Tα and π = ⋃α<κ+ πα. Then π ∶ T → κ+ is a function such

that s ⊆ t → π(s) < π(t).
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For a contradiction assume that T is special. As we assume κ<κ = κ, by Lemma 3.12
T is special if and only if T is Qκ-embeddable. Therefore there is a function f ∶ κ+ → κ
such that f ∘ g embeds π′′T in Q. Let

C = {α < κ+|α is a limit ordinal and π′′(T � α) = π∗
α

′′T′
α and

f ∘ g � α embeds π∗
α

′′T′
α in Qκ and

(∀s ∈ T′
α)(∀x ∈ [κ ⧵ Rng(s)]<κ)(∀q >Q g(f (π(s)))

((∃t ∈ T)(t ⊇ s & Rng(t) ∩ x = ∅ & g(f (π(t))) ≥Q q)

→ (∃t′ ∈ T′
α)(t′ ⊇ s & Rng(t′) ∩ x = ∅ & g(f (π(t′))) ≥Q q)} .(3.14)

It is easy to verify that C is a closed unbounded subset of κ+. As we assume ♦κ(Eκ
+

κ ),
the set {α ∈ Eκ+κ |f � α = fα} is stationary, so there is α ∈ C such that f � α = fα and
α has cofinality κ. Let t ∈ Tα and let q = g(f (π(t))). By the construction of T , there is
(s, x) ∈ Δα

q such that Rng(s) ∩ x = ∅ and s ⊂ t. Since f ∘ g , and π are order-preserving,
g(f (π(s))) <Q g(f (π(t))) = q.

Since g(f (π(s))) <Q q and g(f (π(t))) ≥Q q, by the definition ofC there exists t′ ∈ T′
α

such that t′ ⊇ s, Rng(t′) ∩ x = ∅ and g(f (π(t′))) ≥Q q. Note that (s, x), (t′, x) are in
Xα and (s, x) ≤α (t′, x). Since (s, x) is in Δα

q and f � α = fα, by (3.13) it must hold that
g(fα(π(s))) ≥Q q. But fα = f � α and so g(f (π(s))) ≥Q q. This contradicts our earlier
inequality g(f (π(s))) <Q q. �

Corollary 3.28. Assume κ<κ = κ and ♦κ+(Eκ+κ ). Then there is an Rκ-embeddable
κ+-Aronszajn tree, which is not special.

Proof. By Lemma 3.17, every M-special κ+-Aronszajn tree is Rκ-embeddable. �

Corollary 3.29. Assume κ<κ = κ and ♦κ+(Eκ+κ ). Then there is an 𝒮𝒮-special κ+-Arons-
zajn tree, which is not special.

Proof. By Lemma 3.16, every M-special κ+-Aronszajn tree is 𝒮𝒮-special for S = {α +
1|α < κ+}. �

The next lemma is a straightforward generalisation of Lemma 2.16 and tells us that the
last inclusion in (3.10) can be consistently proper.

Lemma 3.30. Assume κ<κ = κ and ♦κ+(Eκ+κ ). Then there is a κ+-Aronszajn tree, which
is S-special for some S unbounded subset of κ+ and it is notM-special and by our assumption
it is not Rκ-embeddable.

Proof. The proof is the same as in Lemma 2.16. �

To show that the second inclusion in (3.10) can be consistently proper, i.e. thatAu-sp ≠
ANS, we need to introduce the notion of an ω-ascent path, which is due to Laver.

Definition 3.31. Let κ be a regular cardinal. We say that a κ+-Aronszajn tree T has
the property of the ω-ascent path if there is a sequence ⟨xα|α < κ+⟩ such that

(i) for each α < κ+, xα is a function from ω to Tα;
(ii) if α, β < κ with α < β then ∃n ∈ ω ∀m ≥ n xαm < xβm.
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If the tree T has a cofinal branch, then this branch is a 1-ascent path and it is obvious
that T is not special. But Aronszajn trees do not have cofinal branches. Thus an ω-ascent
path is a pseudo-branch with width ω which prevents the tree from being special.

The following fact is due to Shelah ([SS88]), building onwork of Laver andTodorčević.

Fact 3.32. Let κ > ω be a regular cardinal. Let T be a κ+-Aronszajn tree with the
property of an ω-ascent path. Then T is not special.

Remark 3.33. No such argument can exist for ω1-trees since it is important for the
proof that there is a regular cardinal between ω and κ+. This is the difference between the
specialization forcing for ω1 and for higher cardinals. In the case of higher cardinals, if
T has an ω-ascent path, then any specialization forcing must collapse cardinals. On the
other hand, as was pointed out by a referee, Baumgartner showed that an ω1-tree has a
cofinal branch if and only if it contains an ascent path of finite width. In particular, the
nonexistence of paths of finite width implies that the corresponding specialization forcing
has the ccc.

Corollary 3.34. Let κ be a regular cardinal. Let T be a κ+-Aronszajn tree with the
property of an ω-ascent path. Then T is not 𝒮𝒮-special.

Proof. Let S ⊆ κ+ be an unbounded subset of κ+ and ⟨xα|α < κ+⟩ be anω-ascent path.
Then ⟨xα|α < κ+⟩ � S is ω-ascent path for T � S and by the previous theorem T � S is not
special. �

The construction of the following tree can be found in [SS88].8

Fact 3.35. Let κ be a regular cardinal. Assume �κ . Then there is a non-Suslin κ+-
Aronszajn tree with ω-ascent path.

Hence we can conclude that the second inclusion in (3.10) can be consistently proper.

Corollary 3.36. Let κ be a regular cardinal. Assume �κ . Then there is a non-Suslin
κ+-Aronszajn tree T such that T is not 𝒮𝒮-special.

Proof. It follows from Corollary 3.34 and Fact 3.35. �
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ABSTRACT
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new logic, called Dynamic branching logic and show some of its basic properties.
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1. Introduction

Branching temporal logics, those originating from Branching space-times (BST), are at-
tempting to model time. Although branching should capture the changes of possibilities,
the point-events that constitute these branches are given in advance and in a tenseless
manner. Common view of time and changes, however, is more connected to dynamic
evolution of options, possibilities, and the future. For this reason, we find it suitable to
try a synthesis of dynamic and branching logic.1 We will shortly discuss the philosophical
background of our work, present the original BST approach, and then present a dynam-
ical branching time model.

2. Philosophical background

How does our work approach the questions of eternalism or presentism, determinism or
indeterminism?

Let us define the terms clearly:
Eternalism is committed to the tenseless coexistence of all events, while
presentism is committed to the thesis that existence is confined just to
the present events, while future and past events do not exist.

(Dorato, 2012)
From these definition stems also our motivation. We hold the view in this paper that

a present event can give rise to the following event by a dynamic process and this would
be a presentist model, as opposed to the static eternalist model.

1 The idea to approach branching as a dynamic process was suggested to the author by Ondrej Majer at a
session of the ‘Prague dynamic group’ (O. Majer, M. Peliš and others).
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The idea of determinism is more complex than it might seem at first sight and we can
differentiate between approaches based onwhat exactly wemean by determinism (Müller
& Placek, 2015). Nevertheless, we use the following definition of determinism: “given the
state of the world now, there is only one possible future outcome”. Thus, indeterminism
means that given the present state we have multiple possible future outcomes.

Our theory would like to be a presentist indeterministic theory. Therefore it would
allow multiple possible outcomes from present events without committing to the exis-
tence of any future or past events. Now, as we do not wish to ignore (entirely) advances
made in the field of physics, we need to address the question of ‘present’. The arrival of
Special Theory of Relativity (STR) marked also the end of a simple idea of present or si-
multaneity2 (Dieks, 1988). It showed how closely time and space are interwoven. We do
not want to ignore this and therefore get inspiration from the Machian view of Barbour
(Barbour, 2000) that is consistent with STR. While BST uses the notion of space-time
fully, we will use a space and time approach. This dichotomy could be viewed as a ver-
sion of the endurantism and perdurantism discussion3 or it can be considered simply as
a different formulations of eternalism and presentism (Dorato, 2012). Instead of taking
entities as entities with four dimensions, three spatial and one temporal, as seen in STR
or BST, we consider entities to be only three dimensional. Therefore our basic build-
ing blocks are not space-time events, but 3D configurations of 3D entities. We could, in
order to accommodate the results of STR, discuss the role of observers in these configu-
rations. However, at this point, we focus merely on the introduction of some ideas how
such presentist approach could start out and do not venture deeper into this topic. An
observer-related4 dynamics was discussed already for BT. The so called BT+I+AC5 struc-
tures are introduced in (Belnap, Perloff, & Xu, 2001). Nevertheless, these structures focus
on the establishment of an agents context and not on dynamic changes and therefore they
stay out of our focus in this paper. Mentioning another related work, Müller introduced
transitions, in the basic case transitions from a point-event to its immediate outcomes,
as a framework to investigate causation and probability theory. The approach uses con-
sistency as a way how to define causal possibility. Still, transitions are again built on the
usual BST foundations and transitions are more like tool choosing selected point-events
rather than dynamically constructing them.

3. Branching space-times

BST is important for us to keep in mind as a reference theory whose expressiveness we
would like to match but do so in a different way. Let us have a look at how time and
possibilities are treated there.

2 The notion that two spatially separated events happen at the same time.
3 Endurantism expresses the view that objects are 3D material objects wholly present at every moment of

their existence. Perdurantism is the somewhat opposite view that objects are 4D objects whose existence
extends over a period of time, i.e. the objects have different temporal parts.

4 Precisely an agent-related.
5 Branching time + instants + agents and choices.
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Branching space-times were introduced by Belnap in (Belnap, 1992). However, we use
the concise formulation from Placek and Wroński article (Placek & Wroński, 2009). The
basic definitions connected to BST follow.

Definition 1 (Placek &Wroński, 2009)
The set OW called Our World , is composed of point-events e ordered by ≤.
A set h ⊆ OW is upward-directed iff ∀e1, e2 ∈ h ∃e ∈ h such that e1 ≤ e and e2 ≤ e.
A set h is maximal with respect to the above property iff ∀g ∈ OW such that h ⊂ g ,

g is not upward-directed.
A subset h of OW is a history iff it is a maximal upward-directed set.
For histories h1 and h2, any maximal element in h1 ∩ h2 is called a choice point for h1

and h2.

Histories are meant to capture the familiar notion of possible courses of events. Hence
if some event e occurred in one course of events, it is inconsistent with a different event
e′, its counterpart from a different course of events. We see a history can be a very large
set as it would contain a series of point-events from the ‘origin’ of time until its ‘end’. The
quotation marks remind us that a model of BST can be without an origin and an end too.

Definition 2 (Placek &Wroński, 2009)
⟨OW , ≤⟩ whereOW is a nonempty set and ≤ is a partial ordering onOW is a structure

of BST iff it meets the following requirements:
(1) The ordering ≤ is dense.
(2) ≤ has no maximal elements.
(3) Every lower bounded chain in OW has an infimum in OW .
(4) Every upper bounded chain in OW has a supremum in every history that con-

tains it.
(5) (Prior choice principle) For any lower bounded chain O ⊂ h1 − h2 there exists a

point e ∈ OW such that e is maximal in h1 ∩ h2 and ∀e′ ∈ O(e < e′).

We can see the steps necessary to befriend branching and space-times. The notion of
histories and their treatment is reminiscent of earlier branching temporal logic, namely
computational tree logic and its fullpaths (Hodkinson&Reynolds, 2006). We see this ap-
proach as an eternalist one, assuming we have all point-events inOW and these eternally
coexist. A different, not necessarily eternalist reading of BST was presented in (Poo-
ley, 2013), where a non-standard non-eternalist interpretation of BST is presented as the
“most promising way to reconcile becoming with relativity”.

The language of Dynamic branching logic will use Priorean operators F, P (Themean-
ings are as usual. In the order of the operators ‘it will be true’, ‘it was true’.) and therefore
we should also address the question, how are these interpreted in BST. We add one new
operator, the ‘Sett ∶’ operator denotes a settled option, i.e. true for all the branches. The
Sett ∶ operator allows us to basically describe the lack of options - in all courses of events,
the statement will be true (for example if I want to capture the statement “no matter what
I do, I will have some typos in this paper”).

Definition 3 Point satisfies formula – BST (Placek &Wroński, 2009)
For the model 𝔐𝔐 = ⟨OW , ≤, v⟩. Where v is the valuation v ∶ Atoms → 𝒫𝒫(OW). For

a given event e and history h, such that e ∈ h:
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𝔐𝔐, e, h ⊩ p iff e ∈ v(p)
𝔐𝔐, e, h ⊩ ¬φ iff not 𝔐𝔐, e, h ⊩ φ
𝔐𝔐, e, h ⊩ φ ∧ ψ iff 𝔐𝔐, e, h ⊩ φ and 𝔐𝔐, e, h ⊩ ψ
𝔐𝔐, e, h ⊩ Fφ iff there is e′ ∈ OW and e∗ ∈ h s.t.

e′ ≤ e∗ and 𝔐𝔐, e′, h ⊩ φ
𝔐𝔐, e, h ⊩ Pφ iff there is an e′ ∈ h s.t. e′ ≤ e and 𝔐𝔐, e′, h ⊩ φ
𝔐𝔐, e, h ⊩ Sett ∶ φ iff for all e′ ∈ h′, for all h′ such that e ∈ h′:

M, e′, h′ ⊩ φ

A short note about the future operator, although the expression does not contain the
event e, it does contain the event e∗ from the history h to which also e belongs. Therefore
one could rephrase the expression as ‘at a future event to e, namely e∗, we will be able
to say that φ is true’. We cannot, however, just pick event e′ as it does not have to be
necessarily in h and it might be that φ does not hold at e∗ (i.e. it is not a settled future).

4. Dynamic branching logic

Dynamic branching logic (DBL) will attempt to model a presentist theory with indeter-
minism. Based on the definitions mentioned earlier, DBL is presentist in the sense that
only a set of events (i.e. present events) is considered and possible future (or past) is con-
structed based only on these present events. Concerning indeterminism, DBL allows for
present events to have multiple possible future outcomes (e.g. quantum observations).
We present a syntactic and a semantic approach.

4.1 Syntax

Language of DBL is the following atomic statements (a, b, c, ...), truth and falsity (⊤,
⊥), logical connectives (∧), negation (¬), temporal operators (F, P, G, H), actions ([C],
[R], [φ! ]), and the branching modality Sett ∶.

The atomic statements are assumed to be in present tense and simple, for example:
‘The doctor is a time-traveling alien.’ The temporal operators can be read as it is usual, i.e.
Fφ stands for ‘it will be true in the future that φ’ and Pφ stands for ‘it was true in the past
that φ’. The temporal operators G and H represent then necessary temporal statements,
i.e. Gφ means ‘it will always be true that φ’.

DBL has three types of actions, [C] is construction, i.e. creation of the future, [R] is
reconstruction, i.e. recreation of the past, and [φ! ] is claiming that a statement φ is true
or becoming true (similar to public announcement from dynamic epistemic logics). The
creation of the future and recreation of the past actions are inspired by Barbour’s time
capsules. The main idea can be summed up in the following way. Every state s ∈ S
contains evidence for the events that were in the past of the state (e.g. fossils, broken
glass, contrail). This evidence allows us to reconstruct the events that lead to the given
state and determine what possible states preceded the given state s. In a similar manner,
the current state of affairs s determines (by physical laws) all the possible states. Therefore,
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based merely on our current state n, we can make a judgment about our past and future.
The actions [C] and [R] then represent an ontological construction, not an epistemic one,
from the given state. Because we do not have at this time a more detailed account of the
states, the actions can be taken as functions from a state to states.

Because DBL aims to be also a model of branching, the idea of a statement being set-
tled, i.e. true for all branches, is a useful one. We denote ‘φ is settled’ as Sett ∶ φ.

The relation between the temporal operators is the following:

(1) Hφ ≡ ¬P¬φ,Gφ ≡ ¬F¬φ

We can then look for axioms of our logic in well known modal logics and their tem-
poral versions. As basis, we can take the minimal tense logicKt (Hodkinson & Reynolds,
2006) (Goranko & Galton, 2015).

Axiom 4
The axioms for BTL are:
(1) all propositional tautologies
(2) G(φ → ψ) → (Gφ → Gψ) and H(φ → ψ) → (Hφ → Hψ)
(3) Gφ → GGφ and Hφ → HHφ
(4) φ → GPφ
(5) φ → HFφ
(6) [α](φ → ψ) → ([α]φ → [α]ψ)

Where α can be any action.
And the rules:
(1) Modus Ponens φ,φ → ψ ⊢ ψ
(2) φ/Gφ
(3) φ/Hφ
(4) φ/[α]φ
(5) Substitution in any propositional tautology.

4.2 Semantics

We present a suggestion for DBL semantics. We need to first realize a DBL model rep-
resents a configuration of three dimensional objects, entities existing concurrently. Ac-
tions then allow us to construct a new model of a new instant discarding the old one. The
model always represents the current status of temporal relations. Every model contains
in itself also information about the future or past events. For example a model represent-
ing a configuration of the first of January 2015 will contain in itself also books describing
past events, diaries of people, video tapes, or geological sediments. The configuration
does also contain many predispositions for future events, for example an emitted electro-
magnetic signal or a sent letter. This approach is reminiscent of Barbour’s time capsules
(Barbour, 2000). We look at time as a static series of 3D images containing no time by
their own virtue, but they do contain a lot of evidence connected to processes connected
to time. Remember, however, neither past nor future exist. Merely the hints, predisposi-
tions, and conditions for the future are actualized.
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The usual terminology speaks about states and this term does not part too much from
our idea of a configuration. The main change is that we do not have point-events as our
basic building blocks but states (configurations) of 3D objects. Therefore a state s truly
represents all that is in the chosen ‘snapshot’ of the universe. It is not merely one point-
event.

Definition 5
The relation ≺ is defined on S as the causal ordering of states.

We want to maintain the idea of branching similar to the one from BST and there-
fore we introduce also histories. However, these histories can be considered closer to the
original histories from Branching time.

The relation ≺ is basically the usual accessibility relation. However, in our temporal
context it is interpreted as the causal relation between states.

Definition 6
A frame ℱ = ⟨S, ≺⟩ is the frame for DBL iff
(1) ≺ is transitive
(2) there exists a state n ∈ S such that it holds for all s from S that s = n or there

are s1, ..., sk ∈ S such that s1 = s and sk = n and either s1 ≺ s2 ≺ ... ≺ sk or
sk ≺ sk−1 ≺ ... ≺ s1

(3) for all spast ∈ S such that spast ≺ n and for all sfuture ∈ S such that n ≺ sfuture it
holds that spast ≺ sfuture

Hence the state n represents a connection point between the past and the future.

Definition 7
A (dynamic) history is the set h ⊂ S such that n ∈ h and for all s1, s2 ∈ h either s1 = s2,

s1 ≺ s2 or s2 ≺ s1.

Definition 8
A choice state between distinct histories h1, h2 ⊂ ℱ is the maximal state in the inter-

section of h1 and h2.

We can notice that the minimal possible choice state for two distinct histories is the
special state n.

TheDefinition 6 forces everymodel of DBL to have its states connected in someway to
the present. They are either the consequences of the present state or the causes for it. This
is related to our earlier claim that all the future and past states are just representations of
information contained in the present state.

Definition 9
The model 𝔐𝔐 is the pair ⟨ℱ, v⟩ with the frame ℱ and the valuation of atomic formu-

las v.

Similarly as in other dynamic logics, we will change the model in course of the eval-
uation of formulas. The three possible actions present three possible ways how to do so.
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The construction C creates from the model 𝔐𝔐 a temporally successive model. Recon-
struction R, on the other hand, presents a model that is temporally preceding our current
model 𝔐𝔐. Both steps make use of the temporal operators in the current model.

Definition 10
We define the model 𝔐𝔐 ∣ C for a model 𝔐𝔐, as the model where we choose one of the

s ∈ S, s.t. n ≺ s, as the new now, i.e. nC = s. The new model contains only histories that
contain nC.

Definition 11
We define the model 𝔐𝔐 ∣ R for a model 𝔐𝔐, as the model where we choose one of the

s ∈ S, s.t. s ≺ n, as the new now, i.e. nR = s. The new model contains all the histories that
contain nC.

Definition 12
We define the model 𝔐𝔐 ∣ φ for a model 𝔐𝔐, state s, as the model where for every h it

holds that 𝔐𝔐, s, h ⊩ Sett ∶ φ.

Definition 13 Model satisfies formula - DBL
For the model 𝔐𝔐 = ⟨S, ≤, v⟩. Where v is the valuation v ∶ Atoms → 𝒫𝒫𝒫S). For a

given state s and history h, st. s ∈ h:

𝔐𝔐, s, h ⊩ p iff s ∈ v𝒫p)
𝔐𝔐, s, h ⊩ ¬φ iff not 𝔐𝔐, s, h ⊩ φ
𝔐𝔐, s, h ⊩ φ ∧ ψ iff 𝔐𝔐, s, h ⊩ φ and 𝔐𝔐, s, h ⊩ ψ
𝔐𝔐, s, h ⊩ Fφ iff there is s′ ∈ S s.t. s ≺ s′ and 𝔐𝔐, s, h ⊩ φ
𝔐𝔐, s, h ⊩ Pφ iff there is an s′ ∈ S s.t. s′ ≺ s and 𝔐𝔐, s, h ⊩ φ
𝔐𝔐, s, h ⊩ Gφ iff for all s′ ∈ S s.t. s ≺ s′ it holds 𝔐𝔐, s, h ⊩ φ
𝔐𝔐, s, h ⊩ Hφ iff for all s′ ∈ S s.t. s′ ≺ s it holds 𝔐𝔐, s, h ⊩ φ
𝔐𝔐, s, h ⊩ Sett ∶ φ iff there is s′ ∈ S such that s ≺ s′, for all h′ that contain s′

it holds 𝔐𝔐, s′, h′ ⊩ φ
𝔐𝔐, s, h ⊩ [ℭ]φ iff there is a model 𝔐𝔐 ∣ C such that 𝔐𝔐 ∣ ℭ, s, h ⊩ φ
𝔐𝔐, s, h ⊩ [ℜ]φ iff for the model 𝔐𝔐 ∣ R it holds that 𝔐𝔐 ∣ ℜ, s, h ⊩ φ
𝔐𝔐, s, h ⊩ [ψ]φ iff there is a model 𝔐𝔐 ∣ ψ such that 𝔐𝔐 ∣ ψ, s, h ⊩ φ

We see therefore that semantics for DBL can work in a very similar fashion as those
of BST, because it maintains the same branching structure. However, it adds the element
of changing a model with actions. We can close our account with two straightforward
theorems6.

Theorem 14
There exists a BST structure that is not a DBL structure.

Proof. In order for a BST structure to be a DBL structure, we need a to fulfill the
definition 6. For every BST structure it holds that ≤ is transitive because it is a partial
ordering on OW . Nevertheless, the second condition does not hold necessarily. Let us
have a BST structure with at least two e1, e2 ∈ OW such that e1 ≰ e2 e2 ≰ e1. Then if

6 The suggestion to enhance the paper with at least some of these theorems comes from the reviewer.
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either one of these two point-events is n the second condition from the definition does
not hold. Thus we have a structure of BST that is not a DBL structure.

We can also construct such a BST structure that for every e there will be a e′ such that
they are incomparable by ≤. Then at least for one e it will be true that e = n and there will
be an e′ such that they are incomparable, i.e. it is not a DBL structure. �

This answer is not a big surprise if we realize that simultaneous point-events are a valid
possibility on BST models. However, they are a crucial impossibility for DBL.

Theorem 15
There exists a DBL structure that is not a BST structure.

Proof. The relation ≺ does not have to be dense and this would contradict the first
requirement of BST models. An example of a DBL model that has a discrete ≺ relation is
the Platonia model presented by Barbour. �

5. Discussion

The comparison of DBL and BST is quite straight forward. We see that DBL attempts
to capture the presentist idea by creating new models every time the state of the world
changes in time (either progresses or regresses). BST on the other hand has a stable un-
changing structure that was fixed at the moment of the first setting up of the model. Both
models represent branches and hence an option for indeterminism, there can be states in
DBL with multiple future options.

There is no big difference in the approach to branching. Already the original BST
claimed clearly that there is no backward branching because it is ‘plausible enough to
warrant making clear what it comes to’ (Belnap, 2003). DBL could in theory have back-
ward branching. Nevertheless, for the same reason as BST, the models were chosen not
to contain backward branches. For any event that would lead to two possible futures
would have a unique reconstruction and therefore it seems plausible to assume there is
only one past. Branching as it was familiar from BST is also present in DBL, however, it
is contained in single models and does not represent a single model.

One might ask, why did we start out with BST and basically strip it of all its new fea-
tures, just to end up with a strange branching time model. The answer is that we tried to
keep in mind the fruits that came with BST and attempted to maintain them also in our
model. This is visible on the fact, how DBL models are based on observers and do not
represent some general branching of time.

6. Summary

We showed how Branching space-times approach the question of time and why they do
so as an eternalist theory. We then presented a dynamic branching logic that presents a
presentist alternative. The comparison of the two approaches showed that they should be
equivalent in their expressive strength.
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Further investigation could show whether the closeness of DBL to other modal logics
gives it an advantage and allows it to prove (as opposed to BST) completeness and sim-
ilar properties. Especially a deeper investigation should be done in relation to the more
philosophical approach of Belnap (Belnap et al., 2001) and Müller (Müller, 2005).
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